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Thesis summary (in English) 

Major depressive disorder (MDD) is a heterogeneous disorder with potentially diverse 

pathophysiological mechanisms. This diversity may account for the observation that far from all 

patients benefit from the same treatment. Consequently, identification of MDD subgroups would 

allow for treatment stratification which could improve clinical trial outcomes and lead to a 

precision medicine strategy in patients. However, previous studies examining whether 

electroencephalography (EEG) can predict the effect of antidepressant treatment have included 

low sample size, and independent replication are needed to confirm these findings.  

The purpose of this PhD work was to a) examine the test-retest reliability of an EEG battery in 

healthy males who were given different antidepressants, b) to validate EEG candidate 

biomarkers that have previously shown some predictive value in our own cohort of unmedicated 

patients with moderate to severe MDD (NeuroPharm Trial) c) explore the effect on EEG 

measures after 8 weeks of selective serotonin reuptake inhibitor/ serotonin noradrenalin reuptake 

inhibitor (SSRI/SNRI) treatment. 

In study Ⅰ, we investigated the test-retest reliability of an EEG battery in 32 healthy males who 

were given four different antidepressant regimens. We compared baseline EEG recordings from 

the four interventions to assess whether EEG/ERP (event-related potentials) were stable over 

time. We found that middle frequency bands (θ, α and β) of continuous EEG were highly reliable 

while evoked power of task-related potentials was less stable. Furthermore, though the reliability 

of ERP measures in general was lower compared to power measures, large components such as 

P300 and Pe still exhibited fair to excellent reliability. Our results support that these EEG/ERP 

parameters are reliable over a three-week interval. 
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In study Ⅱ, we aimed to replicate previously reported EEG predictive biomarkers for treatment 

outcome by using an independent cohort of 91 antidepressant-free outpatients and 35 healthy 

controls. We found that only 2 out of 6 chosen biomarkers could be partially validated; both of 

which involved alpha asymmetry. The results indicate that measurement of alpha asymmetry 

carries information that improves prediction of treatment efficacy.   

In study Ⅲ, used EEG data from the NeuroPharm data to determine the predictive value of 

vigilance regulation, we found that patients with MDD showed a hyperstable EEG-wakefulness 

regulation compared to healthy controls, replicating prior work. Treatment responders showed 

faster decline in vigilance regulation in comparison to non-responders at pretreatment. 

Furthermore, patients with good treatment response after 8 weeks of SSRI/SNRI treatment had 

their EEG-wakefulness regulation patterns reverted to look more like that of controls. 

These findings support that EEG vigilance measures adds value diagnostically as well as in 

predicting treatment outcome in patients with MDD. Overall, the low cost of and methodological 

simplicity of EEG makes it a good tool for the optimization of patient stratification in future 

clinical trials and may even have value when choosing drug treatment for MDD patients.  
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Thesis summary (in Danish) 

Depression er en klinisk heterogen sygdom  som sandsynligvis forårsages af forskellige 

sygdomsmekanismer og tilgrundliggende forstyrrelser. Denne heterogenitet kan muligvis 

forklare, hvorfor langt fra alle patienter har effekt af den samme antidepressive behandling. 

Såfremt man an identificere undergrupper af depression vil man dels kunne målrette fremtidige 

kliniske forsøg bedre og dermed på sigt få en præcisionsmedicinsk tilgang til behandling af 

depression. Tidligere studier, der har undersøgt om elektroencefalografi (EEG) kan forudsige 

effekten af antidepressiv behandling har imidlertid kun inkluderet få patienter og der er behov 

for uafhængige studier til at bekræfte disse fund. 

Formålet med dette PhD projekt var  a) at undersøge test-retest reliabiliteten af EEG mål hos 

raske mænd, der modtog forskellige typer antidepressiv medicin, b) i en ny kohorte af patienter 

med en moderat til svær depression (NeuroPharm Trial) at validere EEG biomarkører, der 

tidligere er påvist at forudsige effekten af antidepressiv medicinog c) undersøge effekten af 8 

ugers farmakologisk behandling med selektive serotonin reuptake inhibitors / serotonin 

noradrenalin reuptake inhibitor (SSRI/SNRI). 

I Studie I undersøgte vi test-retest reliabiliteten af et EEG batteri i 32 raske mænd, som fik fire 

forskellige typer af antidepressiv medicin. Vi sammenholdt baseline EEG målinger fra de fire 

interventioner for at estimere, hvorvidt EEG og ERP (event-related potentials) målingerne var 

stabile over tid. Vi fandt at midt-frekvensbånd (θ, α og β) for kontinuerlig EEG havde høj 

reliabilitet mens evokeret power fra task-baserede potentialer var mindre stabil. Endvidere fandt 

vi at selvom ERP mål generelt havde lavere reliabilitet sammenholdt med EEG power mål, så 

havde store ERP komponenter som P300 og Pe moderat til høj reliabilitet. Disse EEG/ERP 

målinger er altså robuste over et tre-ugers interval. 
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I Studie II søgte vi at bekræfte tidligere fund af udvalgte EEG biomarkører som prediktorer for 

behandlingsrespons i en uafhængig kohorte af 91 medicin-fri patienter med depression og 35 

raske forsøgspersoner. Vi fandt at 2 ud af de 6 potentielle EEG biomarkører delvist kunne 

bekræftes; begge markører involverede alpha asymmetri. Disse resultater tyder på at fund af 

alpha asymmetrikan forudsige behandlingseffekten af antidepressiv medicin.  

I studie III undersøgte vi i NeuroPharm kohorten et EEG mål for regulering af vigilance (grad af 

vågenhed) for dets prediktive værdi af antidepressiv behandling. I tråd med tidligere fund fandt 

vi, at patienter med depression udviste over-stabil regulering af vigilance  i forhold til raske 

kontroller. Patienter med god effekt af den medicinske behandling havde et hurtigere fald i 

vigilance regulering end dem, der ikke havde. Endvidere så vi, at EEG vågenhedsreguleringen 

normaliseredes hos de patienter der udviste god symptomlindring efter 8 ugers behandling med 

SSRI/SNRI . 

Tilsammen understøtter disse fund at EEG kan bidrage med diagnostisk og prædiktiv værdi i 

behandlingen af patienter med depression og har EEG et godt potentiale til at underinddele 

patienter med depression i fremtidige behandlingsforsøg. Endvidere kan EEG måske i fremtiden 

anvendes til at guide den medicinske behandling af patienter med depression. 
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Introduction 

Major depressive disorder (MDD) is a heterogeneous disease which comprises wide-ranging 

biological causes. Currently, it often takes long time to settle the right treatment, given their trial-

and-error method and as a result, patients often experience a protracted disease course (Baskaran, 

Milev, & McIntyre, 2012). They are thus far from satisfactory, especially for patients with a 

history of previous treatment failure. The treatment approaches we have available today include 

different classes of antidepressants, psychotherapy, electroconvulsive treatment (ECT) and 

repetitive transcranial magnetic stimulation (rTMS), we urgently need biomarkers to classify 

depressed patients and determine the best treatment approach for each patient based on their 

specific profile. Biomarkers are used to stratify patients into clinically meaningful subgroups 

based on biological characteristics, e.g. neurophysiological patterns. The idea is that patients 

who share similar profiles will also respond similarly to the same treatment, allowing clinicians 

to optimize treatment selection based on previous experience with other patients from the same 

subgroup. 

During the past decades, researchers have attempted to use different neuroimaging tools to 

identify biomarkers that could facilitate the treatment selection in MDD. These tools include 

such as positron emission tomography (PET, McGrath et al., 2013), functional magnetic 

resonance imaging (fMRI, Miller et al., 2013), as well as genetic analysis (Tansey et al., 2012). 

Unfortunately, none of these measures have been adopted for clinical use due to the lack of 

validation, insufficient predictive value, and implementation difficulty (Baskaran et al., 2012; 

Widge et al., 2018). Meanwhile, neurophysiological measures have served as biomarkers in 

various disorders, including mood disorders (Lemere, 1936) as early as the first half of the 20th. 

Among them, electroencephalography (EEG), a monitoring technique for direct and ongoing 

neural activity, has great potential to work as a biomarker in a clinical environment due to its 
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low-costs, high temporal resolution of directly assessed mass-neuronal activity and its relatively 

ease of implementation. 

Researchers recently have identified several EEG biomarkers to be associated with treatment 

outcome in MDD (Arns et al., 2016; Olbrich et al., 2016; Pizzagalli et al., 2018; Pizzagalli et al., 

2001; Spronk et al., 2011; Wade & Iosifescu, 2016). While the application of EEG as predictive 

biomarkers seems promising, this application faces similar obstacles as with other imaging tools: 

low effect sizes, small samples, a lack of independent replication of the results in other study 

cohorts and research groups, its usage of different response criteria and the neglect of negative 

results (Widge et al., 2018). To address the different parameters in MDD prediction studies, the 

current study proposes to do the following in three parts:  

a) To examine the pre-intervention test-retest reliability of an EEG battery in healthy males who 

were given different antidepressants.  

b) To assess, using our own dataset (NeuroPharm trial), the effectiveness of EEG candidate 

biomarkers that have previously shown predictive power. 

c) To explore the drug effect on EEG measures after 8 weeks of selective serotonin reuptake 

inhibitor/ serotonin noradrenalin reuptake inhibitor (SSRI/SNRI) treatment. 

Major Depressive Disorder 

Major Depressive Disorder (MDD) is a medical condition with which the patients shows a 

depressed mood and reduced interest in daily activities (see the DSM-Ⅳ manual, American 

Psychological Association (APA), 2013). It has been ranked by WHO as the world leading 

causes of disability (World Health Organisation, 2017) with a lifetime prevalence of 4.7% 

(Ferrari et al., 2013). Women are more vulnerable to the disease and with higher prevalence 

(World Health Organisation, 2017). For most patients, MDD is a chronic episodic disorder and 
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the recurrent course of MDD often require long-term clinical care (Fava & Kendler, 2000). 

Therefore, the loss of work capacity as a result of MDD and the consequent health-care costs 

constitute a tremendous social burden, which is made even more severe for treatment-resistant 

patients. 

To be diagnosed with MDD, patients display a change of mood and loss of interest or pleasure in 

any activities, often accompanied by psychophysiological changes including a loss of appetite, 

disturbed sleep, impaired psychomotor speed and attention, fatigue, feelings of guilt, 

contemplation, and suicidal thoughts. However, given the heterogeneity in MDD, depressed 

patients often display wide variation in clinical symptoms (Fava & Kendler, 2000), which may 

be why not all patients benefit from the same treatment (Spronk et al., 2011). According to the 

International Study to Predict Optimised Treatment - in Depression (iSPOT-D), one of the 

largest multisite studies of predictive biomarkers in MDD, only 62% patients responded to the 

first-line drug and 46% of patients reached full remission (Saveanu et al., 2015).  The large 

heterogeneity in MDD may explain why not all patients benefit from the same treatment (Spronk 

et al., 2011), and undoubtedly yet more challenges to the current treatment.  

The current treatment strategy requires a lengthy observational period (commonly six to eight 

weeks), after which non-responders are shifted to augmented treatment or to other interventions, 

which also takes a long waiting period. The treatment cycle is repeated until the successful 

treatment is found, if any, or until the patient spontaneously remits. Worse still, patients who 

experience early treatment failure are less likely to achieve remission and would have higher 

relapse rates (Rush et al., 2006). Biomarkers have become a possible solution to the impasse 

since they could help tailor more accurate treatments for depressed patients with specific 

profiles. Biomarkers have thus been studied by recent researches that aim at increasing the 

efficacy of antidepressants (reviewed by Olbrich & Arns, 2013). 
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Instruments for criteria in treatment response 

Depression rating scales were introduced in psychopharmacology in the 1960s and have been 

used for assessing the treatment response. The common instruments include Hamilton 

Depressive scale (HDRS) (Hamilton, 1967), Montgomery Åsberg Rating Scale (MDRS) 

(Montgomery & Asberg, 1979), self-rating Beck Depression Inventory (BDI) (Beck, Ward, 

Mendelson, Mock, & Erbaugh, 1961) and Clinical Global Impression scale (CGI) (Guy, 1976). 

The HDRS and MDRS are widely used in quantifying depressed severity with substantial 

similarity (Kearns et al., 1982) while BDI is the most commonly used self-rating scale with less 

agreement for core depressive symptoms compared to MDRS (Svanborg & Åsberg, 2001). CGI 

was designed to provide global impression of a depressed patient and has clinical advantage 

when illustrating the total score compared to HDRS and MDRS (Leucht et al., 2017). Although 

translations between depressive scales are available (Leucht, Fennema, Engel, Kaspers-Janssen, 

& Szegedi, 2018; Riedel et al., 2010), the use of different criteria and cut-offs by researchers 

limits the ability to generalize results between studies. For example, a patient could be 

categorized as a responder in one study but as a non-responder in a study that applies different 

response criteria. In addition, specific depressive symptoms might be neglected on the sum score 

on the depressive scales. Study has shown that the total score of HDRS does not provide 

sufficient discriminability to qualify a drug as an antidepressant as it is unable to differentiate 

between treatment and placebo (Bech, Kajdasz, & Porsdal, 2006). This implies that the treatment 

response may be overlooked by the gross score. As such, it could be that a subscale of HDRS as 

HDRS6 could provide better sensitivity for capturing treatment changes compared to HDRS17 for 

HDRS6 focuses on the symptoms of sleep, anxiety and appetite (Bech et al., 2010, 2006; 

Østergaard, Bech, & Miskowiak, 2016). These rough depression rating scales could in turn 

hindered the process of biomarker development. As identified biomarkers rely on the sum scores 

from e.g. the HDRS17 could be less sensitive since we can’t be sure of what core symptoms have 
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the patients being response to. Another related issue is the cut-off value of treatment response. 

Responders are often defined as a 50% reduction from baseline to endpoint, though being 

questioned of how it became the golden standard (Bandelow, 2006), the cut-off value has been 

established as an efficient standard for HDRS, MADRS and BDI (Leucht et al., 2018; Riedel et 

al., 2010). From clinical experience, patients who were classified as responders, informed by the 

golden standard, still suffering from residual symptoms (Kennard et al., 2006). The development 

of clinical biomarkers relies heavily on these instruments, these inconsistent practices 

undoubtedly limit the possibilities for the biomarkers to be in clinical use. It remains unclear 

how the biomarkers relate to the specific depressive symptoms. 

Pathophysiology 

Many theories have been proposed to explain the pathophysiology of MDD including 

monoamine-deficiency hypothesis, neurotrophic dysregulation, hypothalamic-pituitary-adrenal 

(HPA) disruption, genetics, altered glutamatergic neurotransmission and dysfunction in specific 

brain structures (for a review see Belmaker & Agam, 2008). However, despite the growing 

understanding of neurobiological mechanism in MDD pathophysiology, none of the proposed 

mechanism can satisfactorily explain all aspects of MDD aetiology. In the following section, I 

focus on three of the most dominant theories: monoamine-deficiency hypothesis, neurotrophic 

dysregulation and HPA disruption. 

Monoamine–deficiency hypothesis  

The monoamine–deficiency hypothesis was proposed in 1950 based on clinical observations and 

animal studies (Freis, 1954). Patients who received reserpine, an antihypertensive agent that 

causes depletion in monoamine neurotransmitters, would develop depressive symptoms 

(Schildkraut, 1965). The induced symptoms could be reversed by the cessation of reserpine 

treatment (Carlsson, Shore, & Brodie, 1957). Moreover, treating patients with iproniazid, an 
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agent that produced increased levels of monoamine neurotransmitters, would improvement 

depressed mood (Crane, 1956). The hypothesis therefore became that there is a deficiency of the 

monoamine neurotransmitters norepinephrine (NE), 5-hydroxytryptamine (5-HT), and/or 

dopamine (DA) in the depressed brain (Coppen Alec, Shaw, Herzberg, & Maggs, 1967; 

Schildkraut, 1965). Based on the depletion theory, the first serotonin-based compounds tricyclic 

antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs) were developed to increase 

the concentrations of monoamine neurotransmitters in vivo and were used effectively to treat 

depression (Kuhn, 1958; Zeller, Ramachander, & Zeller, 1965). Nevertheless, the depletion 

theory cannot explain why drugs like buspirone and gepirone also work as antidepressants. 

These drugs act by decreasing 5-HT release in the brain yet still improve depressive symptoms 

(Hirschfeld, 2000). It was further challenged by the delay between administration of drugs and 

antidepressant effects. Typically, improvement of depressive symptoms takes days to weeks 

while the neurotransmitter concentrations are increased within hours after the intake (Hirschfeld, 

2000). ). To account for these discrepancies the monoamine-deficiency theory has continually 

been modified over decades (Goldberg, Bell, & Pollard, 2014; Kafka, 2003). it undoubtedly 

provides an important biological basis for the aetiology of depression and is still central in the 

development of pharmacological drugs. 

Neurotrophin dysregulation  

Neurotrophins constitutes four growth factors including nerve growth factor, brain-derived 

neurotrophic factor (BDNF), neurotrophin-3 and neurotrophin-4. In particular, downregulated 

BDNF has been associated with the genesis of depression and suicidal behaviour (Duman, 

Heninger, & Nestler, 1997; Dwivedi, 2009). Studies have demonstrated that patients with MDD 

had lower BDNF levels in comparison to healthy controls (see meta-analysis Molendijk et al., 

2014; Sen, Duman, & Sanacora, 2008). BDNF levels have also been correlated to depressive 
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symptom severity; the lower BDNF levels the more severe the depressive symptoms (Karege et 

al., 2002) which might reflect failure of neuronal plasticity in depression (Gonul et al., 2005). 

Furthermore, a number of findings have indicated that antidepressants and electroconvulsive 

therapy (ECT) can increase serum BDNF in depressed patients (Chen, Dowlatshahi, MacQueen, 

Wang, & Young, 2001; Gonul et al., 2005; Nibuya, Morinobu, & Duman, 1995; Shimizu et al., 

2003). One post-mortem study with MDD patients showed increased BDNF expression in 

hippocampus in patients treated with antidepressants (Chen et al., 2001). Although the role of 

BDNF pathophysiology has been debated (Egeland, Zunszain, & Pariante, 2015; Ernest Lyons et 

al., 1999), the implication of BDNF theory in neural plasticity and depression is encouraging 

(Brunoni, Boggio, & Fregni, 2008; Tao et al., 2020). 

 

Hypothalamic–Pituitary–Adrenal axis dysfunction 

Alterations to the hypothalamic–pituitary–adrenal (HPA) axis have been found in stress-related 

disorder, particularly depression (Pariante & Lightman, 2008). A hyperactive HPA axis in 

patients with MDD was been first documented in the 1950s (Board, Wadeson, & Persky, 

1957)and evidence was accumulated later on (McKay & Zakzanis, 2010; Stetler & Miller, 2011). 

Furthermore, a hyperactive HPA axis has been found to normalize after successful treatment 

(Barden, Reul, & Holsboer, 1995; Hennings et al., 2009). It has been proposed that there is a 

potential link between HPA axis and the serotonergic hypothesis of depression (Tafet & 

Bernardini, 2003), and targeting the abnormalities of HPA axis is considered to be a promising 

strategy (Bosker et al., 2004).  

Current treatment approach and its effectiveness 

Based on the proposed genesis of depression, various treatment approaches are available such as 

different classes of pharmacological drugs, psychotherapy, and therapies including ECT and 
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rTMS. The goal of a successful treatment is to reduce depressive symptoms and preferably 

achieve remission as well as avoid later relapse. Antidepressants are facing two major challenges: 

the delayed onset of action and low response rates (Bosker et al., 2004). A substantial proportion 

of patients does not response to the antidepressants they first receive. According to the 

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, remission and 

response rates to first-line antidepressant drugs are lower than 30% and 50%, respectively (Rush 

et al., 2009). These challenges strongly affect patients’ compliance and expectation which is why 

we face heightened need for clinically reliable biomarker and a shift from the current diagnostic 

approach to a prognostic approach to the prognostic approach (Olbrich & Conradi, 2016). 

Pharmacological drugs 

The first antidepressants TCAs and MAOIs act by increasing the concentration of NE and 5-HT 

in vivo; with these drugs have some success in alleviating depressive symptoms they  

unfortunately also have a series of undesirable side effects (Feighner & Cohn, 1985; Owens, 

2004). The resulting side effects are caused by the TCAs and MAOIs acting on non-specific 

neurotransmitter receptor sites such as NE, serotonin reuptake, adrenergic and muscarinic 

receptors (Benkert, Gründer, & Wetzel, 1997). Overdose of TCAs even carry the risk of death. 

Therefore, the second wave of antidepressants, SSRIs and SNRIs, were developed to have more 

specific target profile (often with a single monoamine system) and thus fewer side effects. 

Although results from a meta-analysis did not demonstrate a better drug efficacy SSRIs over the 

“old” antidepressants TCAs, it showed that patients who were treated with TCAs withdrew more 

due to the significant side effects (MacGillivray et al., 2003). Since then, many different types of 

antidepressants have been introduced based on the various modes of actions on neurotransmitter 

levels and can be categorized as: TCA, tetracyclic antidepressants, SSRI, norepinephrine 

reuptake inhibitors (NRIs), SNRI, MAOIs and other antidepressants (for a pharmacotherapeutic 
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armamentarium please refer to Bauer et al., 2013). According to the World Federation of 

Societies of Biological Psychiatry (WFSBP) guidelines (Bauer et al., 2013), the first-line 

treatment options in treating depression include SSRI, followed by mirtazapine, SNRI and other 

“second generation” antidepressant. These types of medicine have the advantages of lower side-

effects and higher tolerability compared to other pharmacological drugs. TCA and MAOIs are 

considered to be second- or third-line treatment due to their safety issues.  

Psychotherapy 

There are seven major types of psychotherapy in treating depression, including cognitive–

behaviour therapy, nondirective supportive treatment, behavioural activation treatment, 

psychodynamic treatment, problem-solving therapy, interpersonal psychotherapy, and social 

skills training (Cuijpers, van Straten, Andersson, & van Oppen, 2008). These different 

psychological treatments are equally efficient (see a meta-analysis, Cuijpers, van Straten, 

Andersson, & van Oppen, 2008). Moreover, studies have shown that depressed patients who 

received interpersonal psychotherapy (IPT) perform significant better on social functioning with 

or without pharmacological intervention (Cuijpers et al., 2011; Hollon et al., 2005; Weissman, 

Klerman, Prusoff, Sholomskas, & Padian, 1981). Also, IPT improves depressive symptoms in a 

large scale and was suggested to include in the treatment guidelines (Cuijpers et al., 2011).  

ECT 

ECT is a medical procedure where the brain is electrically stimulated while the patient is under 

anaesthesia. It is used mainly when pharmacological drugs fail to treat severe depression 

(Kellner et al., 2012; Lisanby, 2007), but it can also be the first-line treatment choice for severely 

depressed patients with psychotic features or psychomotor retardation, treatment-resistant 

depression (TRD) and some patients who require a rapid relief from depression (WFSBP 

guidelines, Bauer et al., 2013). Although ECT is a blunt procedure, it has better clinical outcome 
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than other antidepressants (Pagnin, De Queiroz, Pini, & Cassano, 2004). A meta-analytic study 

compared effects of ECT to other treatments including simulated ECT, placebo, and various 

antidepressants, demonstrating that ECT is clearly more effective than all other treatments 

(Pagnin et al., 2004). Moreover, patients who received ECT are found to have a remission rate as 

high as 75% (Husain et al., 2004). It was suggested that ECT improves depressive symptoms by 

altering patient’s biological entities in many aspects (Wahlund & von Rosen, 2003) such as an 

increased plasma BDNF (Haghighi et al., 2013). In general, ECT is a highly effective treatment 

especially for TRD patients even it requires anaesthesia and involves a risk of cognitive 

impairment (Mathew et al., 2019).  

rTMS 

rTMS is a focal and non-invasive technology that induces patient’s electrical pulses through a 

TMS coil on the scalp. Without involving a surgical operation, it is an alternative stimulation 

technique to treat a board range of psychiatric disorders, especially depression (McNamara, Ray, 

Arthurs, & Boniface, 2001; Slotema, Blom, Hoek, & Sommer, 2010). An increasing amount of 

evidence has demonstrated that treating patients with prefrontal rTMS could induce 

antidepressive effects (George et al., 2014; George, Taylor, & Short, 2013; Padberg et al., 2002). 

Previous studies have investigated the therapeutic effect of rTMS applied to different stimulate 

regions of prefrontal cortices (Downar & Daskalakis, 2013) and the right lateral orbitofrontal 

cortex (OFC) (Feffer et al., 2018). The techniques of rTMS have been steadily improved via 

dosing augmentation, extension of treatment courses, and designing personalized stimulation 

frequencies for patients, etc. (see review Downar & Daskalakis, 2013). As such, patient’s 

remission and response rate can be comparable to those adopting pharmacological interventions 

(Downar & Daskalakis, 2013). In general practice, rTMS is typically prescribed for patients who 

are taking adjunctive pharmacological medicine (Carpenter, Laney, & Mezulis, 2012). A study 
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showed that there exists an interaction between concurrent medication and the rTMS therapy, 

indicating that the combination of rTMS and psychostimulants such as amphetamine and 

armodafinil may result in improved clinical outcome (Hunter et al., 2019). Furthermore, rTMS 

was approved by the US Food and Drug Administration (FDA) in October 2008 as a treatment of 

depression and has since then become a promising new solution for treating depression (see 

meta-analysis Slotema et al., 2010).  

EEG 

Electroencephalography is a monitoring technique for direct, ongoing mass-neuronal activities. It 

acquires information through the electrodes placed on the scalp. When cortical tissues are 

activated, it produces electric currents flowing from different tissues to the brain, which also pass 

the scalp into the skin. If electrodes are applied to the skin at that time, the currents—only tiny 

fractions of the flowed currents—can be detected and recorded by the applied electrodes as a 

potential distribution. The recorded voltage is directly reflective of neural oscillations in the 

cortex. In general, the recorded signal can be quantified in the dimensions of time, space, and 

frequency. The dimension of time most directly reflects the oscillating neuronal activity. The 

EEG signal is in the time frame of tens to hundreds of milliseconds to a few seconds, where most 

of the cognitive processes occur. EEG has therefore been used as a neurofeedback technique 

(Groen et al., 2008) as well as in ERP studies (Hillyard, Luck, & Mangun, 1994). With a Fourier 

transform, EEG signals can be parsed into the frequency domain, which have three 

characteristics: frequency, power (the strength) and the phase (the timing of the frequency 

activity). EEG data could also address the ‘where’ question with its localization methods, for 

instances, instead of relying on the two-dimensional EEG electrode array, the low-resolution 

electromagnetic tomography (LORETA) provides the distribution of the current source density 
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(CSD) throughout the full brain volume (Pascual-Marqui, Michel, & Lehmann, 1994; Pascual-

Marqui et al., 1999). With neurophysiological rooted hypotheses, this multidimensional 

information allows us to examine the brain-behaviour relationship.  

The first report of human EEG dates to 1929, when a German physician Hans Berger first 

demonstrated that rhythmic brain activities could be observed on human scalp without 

craniotomy and he also pioneered Fourier transform to quantify the EEG. He described the 

observed oscillations of the electrical currents on the scalp as two wave types, one larger with the 

characteristics of slower time course and one shorter with more rapid one (La Vaque, 1999). 

Berger later identified them as alpha and beta waves, which, he found, appear alternatively 

depending on changing arousal levels. Moreover, Berger used EEG as a tool to examine the 

neuropathology, pharmacological effects, sleep and some psychiatry disorders (La Vaque, 1999). 

Berger’s early research has laid a solid foundation for EEG studies. Today, EEG has been 

intensively used in exploring the cognitive processes and has also been commonly used in 

clinical environments to study different psychiatric disorders (Brassen & Adler, 2003; Loo et al., 

2003; Mulert et al., 2007).  

The Physiological basis of EEG 

EEG represents the postsynaptic potentials of the activated cells flow from the summated activity 

of excitatory postsynaptic potential (EPSP) and inhibitory postsynaptic potentials (IPSP) with 

similar geometric orientation (Figure 1). The action potential, because of its rapidly deceased 

propagation from the source to the scalp and short-lasting duration, is less likely to be detected 

by scalp EEG (Brienza & Mecarelli, 2019). However, it can occur in epileptic patients, where 

many action potentials activated simultaneously and be detected as a “spike” (M. Holmes, 2008).  
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Figure 1 The scalp EEG recorded from the summation of EPSP (A) and IPSPs (B) at postsynaptic sites from a large numbers of 

pyramid cells with ensembled orientation. The figure is adapted from Feyissa & Tatum (2019). 

Scalp EEG signals are generated by the large population of neurons dominated by the activity of 

pyramidal cells with assembled orientation in the cortical beneath the placed electrode 

(Murakami & Okada, 2006). Thus, the location and the geometric orientation of the generator 

play a critical role in shaping EEG signals. Field potentials with radial orientation generated 

from cortical surface constitute most to the EEG signals while dipoles (generators) with 

tangential orientation and dipoles in the sulci are less likely to be recorded by a scalp EEG. 

Therefore, sources from deep brain structures like thalamus, basal ganglia, hippocampus, and 

brainstem (Holmes & Khazipov, 2007) are difficult to be captured by the electrode placed on the 

scalp. Another related issue is volume conduction. Volume conduction is mainly caused by 

cerebrospinal fluid (CSF), which results in a tangential spread of electrical fields (Van Den 

Broek, Reinders, Donderwinkel, & Peters, 1998). As such, a placed electrode would record 

ripple signals from the neuronal activity just beneath another electrode. These factors challenge 

the accuracy of the ‘inverse’ problem which calculates the estimated sources from the observed 

activities.  
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The periodic activity observed in raw EEG, also called oscillations, can be considered as the 

result of the interaction between excitatory and inhibitory neurons. According to the excitatory-

inhibitory feedback loop synchronization mechanism, an oscillatory cycle begins with the 

excitation of a population of neurons which then generates further excitation, until the inhibitory 

networks within these population are also activated to bring down the population activity. The 

activity of the interneurons then decreases, allowing the excitation to recover and generate the 

next ‘waxing-and-waning’ cycle. This reciprocal behaviour between EPSPs and IPSPs produces 

the oscillatory process (Wang, 2010).    

EEG electrode positioning 

The physiological characteristics of the scalp EEG signal has implied the importance of the 

electrode positions. In order to provide a standardized measurement from the anatomical 

electrical current distribution on the skull, the 10-20 International electrode system was 

established (Jasper, 1958), resulting in a standardized system for clinical EEG (Klem, Lüders, 

Jasper, & Elger, 1999). The 10-20 International electrode system means that, taking the 

circumferential line as an example, T7 is 10% distance of the whole line from T9, C3 is 20 % 

from T7, and 20 % for Cz-C3, C4-Cz, T8-C4 and lastly, 10% for T10-T8 (Figure 2, more details 

please refer to Klem et al., (1999). It also provides a naming system to the electrode positions 

which makes the communication across EEG studies available (Seeck et al., 2017). Later, the 

extended 10% and high-density array of 5% were developed, providing electrode numbers up to 

345 (Oostenveld & Praamstra, 2001). A high-density EEG (EEG) array of 256 channels is shown 

in Figure 2. Such an electrode cap is mainly used in electrical source imaging for presurgical 

evaluation, especially when estimating the sources of epileptic activity is in focus (Seeck et al., 

2017). However, the nomenclature of scalp electrode in the HD EEG array is in strong needs for 

standardization (Heine, Dobrota, Schomer, Wigton, & Herman, 2020).   
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Figure 2 EEG electrode system from different position montages. The left panel refers to the standardized International 10-20 

electrode system while the right panel demonstrates the high-density scalp EEG array from HydroCel Sensor Net system (EGI, 

Inc., Eugene, OR).  

Limitations of EEG 

Low spatial information and EEG artefacts are considered the major limitations of EEG. As 

mentioned earlier, due to the nature of volume conduction in the brain, EEG has a limited 

capacity in explaining activities coming from deep brain sources and separating the brain’s 

functional activities from other sources. Moreover, the accuracy of EEG signals may also be 

affected by the number of electrodes applied to the scalp. This number ranges from a basic array 

containing 25 electrodes to a HD EEG arrangement of up to 256 electrodes (Figure 2)—and even 

the latter number may not be sufficient (Seeck et al., 2017). Electrical activities between 

applicable electrodes could only be estimated using the spline interpolation method from 

neighbouring electrodes (Perrin, Pernier, Bertrand, & Echallier, 1989). Therefore, the signal 

projected to topographical presentation may not reflect the true signals generated by the 

particular areas of the cortices. The exact location of the neuronal generator is affected by factors 
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such as the different conductivity of brain tissues, non-homogeneity properties of the skull, and 

different geometric orientation of cortical sources (Teplan, 2002). Although there are several 

proposed methods, such as dipole fitting, adaptive and nonadaptive distributed-source imaging 

method, to address the ‘inverse’ problem, the accurate estimation of the location, orientation, and 

magnitude of the signals could still be difficult.  

Artefacts in EEG signals are defined as unwanted and non-neurophysiological signals (Tandle & 

Jog, 2015). The most common artefacts contaminating EEG signals are those generated by eye 

movements, saccades and blinks, muscular movements, electrocardiogram, perspiration, and other 

addictive random noise arising from instrumental noise and other physiological generators (Romo-

Vázquez et al., 2012). Study on epilepsy have demonstrated that the contamination from muscle 

artefacts have hindered the identification of epileptic tissues (Ren, Gliske, Brang, & Stacey, 2019). 

These artefacts pose challenges to the analysis and interpretation of the EEG signal.   

Pharmaco-EEG  

Pharmaco-EEG provides a non-invasive tool for CNS intoxications by monitoring 

neurophysiological signals to aid treatment selection. In psychiatric and industrial settings, 

Pharmaco-EEG often measures resting-state EEG and is quantified by the spectral power. It has 

two main implications: monitoring drug-induced EEG alterations and predicting clinical 

response to a pharmacological medicine (see review by Mucci, Volpe, Merlotti, Bucci, & 

Galderisi, 2006). Pharmaco-EEG has been intensively used in studying the diagnosis and 

treatment follow-ups including immediate (Iinuma, Tamahashi, Otomo, Onuma, & Takamatsu, 

1978) and long-term drug effects (Mikati, Trevathan, Krishnamoorthy, & Lombroso, 1991) on 

epilepsy patients (Meador et al., 2016; Puspita, Soemarno, Jaya, & Soewono, 2017; Smith, 

2005). In a review of Höller, Helmstaedter, & Lehnertz (2018), most of the antiepileptic agents 

function by supressing the paroxysmal epileptic form of discharges and through an overall 
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attenuation of power. The most frequently observed antiepileptic effects involves the slowing 

down of EEG signals, including an increased power of low frequencies (δ and θ) and a decrease 

in higher frequencies (Höller et al., 2018). These EEG changes were also observed in the 

medication treatment of schizophrenia (Koenig, Hernandez, & Rieger, 2016). Recently, the focus 

has been drawn to the study of depression and antidepressants (reviewed by Alhaj, Wisniewski, 

& McAllister-Williams, 2011).  A number of studies revealed an increase in the θ and a decrease 

in α band on drug-free MDD patients who were administered with buspirone, an agonist of 5-

HT1A receptor (Anderer, Saletu, & Pascual-Marqui, 2000; McAllister-Williams & Massey, 2003; 

Hamish McAllister-Williams, Massey, & Fairchild, 2007). Moreover, in a four-way crossover 

study on the effects of desipramine and two regimens of duloxetine on healthy male compared to 

placebo, results showed that duloxetine prolonged the onset latency of rapid eye movement sleep 

(Chalon et al., 2005). This provides direct evidence through EEG that the sleep disturbances in 

MDD patients can be improved by antidepressants.  

According to Mucci et al., (2006), EEG changes after medication is even a better clinical 

manifestation than serum levels because the drug remnant stays in cells even after the patient’s 

serum concentration drops to zero. However, the EEG measures indexing drug activity have not 

been established. Traditional pharmaco-EEG indices such as power analysis might not be 

sufficient to capture the highly complex interactions between neuromodulatory systems in the 

brain. The use of more sophisticated and sensitive measures is required. For instance, combining 

absolute and relative powers, topographic parameters, and sources localization, the Vigilance 

Algorithm Leipzig (VIGALL) has been developed to identify and quantify different functional 

brain states during wakefulness (Ulrich Hegerl, Wilk, Olbrich, Schoenknecht, & Sander, 2012; 

Olbrich et al., 2015). Several studies have documented that this theoretical framework has 

predictive value for the treatment efficacy of SSRI antidepressants (Olbrich et al., 2016; Schmidt 

et al., 2017). Overall, a mechanism measuring changes in EEG responses to drug use is yet to be 
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established before it can be used for aiding treatment selection and for assessing drug efficacy 

and safety.   

EEG and the Serotonergic system 

The serotonergic system plays a role in various biological functions including mood, appetite, 

sleep-wake regulation, and cognition (Bravo et al., 2013). Using EEG, preclinical studies have 

found evidences showing the effect of serotonergic modulation of the cholinergic neurons on 

cortical activity (Fumoto et al., 2010). Serotonin medication produced a dose-dependent increase 

of the low frequency α activity while decreased the high frequency γ activity in the cortical EEG 

(Bronzino, Brusseau, Morgane, & Stern, 1972; Cape & Jones, 1998). Primary auditory cortices 

were found to have the richest concentration of serotonin levels as well as the highest synthesis 

rates (Hegerl, Gallinat, & Juckel, 2001). As such, loudness dependence of auditory evoked 

potential (LDAEP) has been suggested to reflect the serotonin levels in vivo (Gallinat, 

Bottlender, Juckel, & Stotz, 2000; U. Hegerl et al., 2001). In animal studies, LDAEP has been 

consistently shown to be inversely linked to the brain serotonin levels, with a higher LDAEP 

reflecting a lower level of serotonin and vice versa (Juckel, Hegerl, Molnár, Csépe, & Karmos, 

1999; Juckel, Molnár, Hegerl, Csépe, & Karmos, 1997). However, in human studies there was 

less agreement (Nathan, Segrave, Phan, O’Neill, & Croft, 2006; O’Neill, Croft, & Nathan, 2008). 

In a recent multimodal study combining EEG and PET results, albeit conducted on a small 

sample (n = 23), demonstrated a correlation between LDAEP and serotonin-1A and serotonin 

transporter in the temporal cortex (Pillai et al., 2020). A number of studies have also reported 

serotonin dysfunction using LDAEP as an indicators in patients with depression (Park, Lee, Kim, 

& Bae, 2010), schizophrenia (Wyss et al., 2013), anxiety disorder (Park et al., 2010) and OCD 

(Stein, 2002). However LDAEP might also be modulated by other neuromodulatory systems 

(O’Neill et al., 2008). In the study of (Carrillo-De-La-Peña et al., 2000), researchers found no 
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difference in the LDAEP of patients with OCD compared to healthy controls. Moreover, 

citalopram, an antidepressant that increases the amount of serotonin with SSRI have shown no 

alterations on LDAEP (Guille et al., 2008). Furthermore, due to the close connection between 

serotonergic system and arousal, alpha asymmetry has been considered to be associated with the 

serotonergic system through a right temporoparietal and subcortical pathway (Bruder et al., 2008; 

Tenke et al., 2011). The increased alpha and alpha asymmetry in SSRI responders might be 

explained by the low level of serotonin in raphe nuclei and cortical afferents (Bruder et al., 2008). 

However, direct evidence showing a connection between cortical alpha activity and serotonergic 

is yet to be found. Future studies with multimodal comparison would be beneficial for 

investigating if the EEG technique could serve as a surrogate of serotoninergic activity in vivo. 

EEG diagnostic and predictive biomarkers in MDD 

Even with the same diagnosis, patients with MDD may display widely different symptoms (Fava 

& Kendler, 2000), and the panacea for this heterogeneous disease is not available yet. The 

treatment of MDD is often a shared decision made by the patient and the physician based on 

his/her subjective experiences. Although many different treatment options are available for 

MDD, the non-response rates to first-line treatment remain high. This calls for objective, reliable 

and accessible markers to help stratify treatment decisions. So far, systematic efforts have been 

made to find such predictive biomarkers, including EEG measures, in order to assess the efficacy 

of antidepressants (Olbrich & Arns, 2013; Spronk et al., 2011; Trivedi et al., 2016; Wade & 

Iosifescu, 2016; Leanne M. Williams et al., 2011). The following section summarizes findings of 

studies that measure the effectiveness using electrophysiological profiles as predictive 

biomarkers to assess different treatments for MDD. 
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Alpha power and alpha asymmetry  

Inconsistent results were reported in previous studies when the absolute and relative alpha 

powers were being assessed in patient’s treatment response and non-response (Mumtaz, Malik, 

Yasin, & Xia, 2015; Ulrich, Renfordt, Zeller, & Frick, 1984). Clinically defined responders are 

found to have lower absolute occipital alpha power compared to non-responders (Ulrich et al., 

1984). However, the study of Bruder et al., (2008) indicated that fluoxetine responders showed 

greater pretreatment occipital absolute alpha power compared to non-responders and healthy 

controls. Also results from the same group, Tenke et al., (2011) assessed the CSD and 

demonstrated that patients with less alpha CSD were less likely to respond to serotonergic drugs. 

The hemispheric asymmetry of alpha power (known as “alpha asymmetry”) and has been 

consistently reported to have prognostic value for improving treatment outcome. Intriguingly, 

alpha asymmetry was found to be gender-specific. Evidence has demonstrated that the response 

of female non-responders to fluoxetine tended to be characterized by right hemisphere 

hyperactivity (right alpha less than left) (Bruder et al., 2001). In the same study setting, Bruder et 

al., (2008) found that responders showed greater activation of the right alpha than the left while 

non-responders showed an opposite asymmetry. Similarly, alpha asymmetry was also reported 

by (Arns et al., 2016) as gender-specific biomarker. Female responders with greater right frontal 

alpha tended to have favourable clinical response to SSRI treatments (Arns et al., 2016).  

Theta and other bands  

By analysing the conventional power spectrum, decreased relative delta, relative theta, and both 

absolute and relative beta powers were associated with better treatment response to paroxetine 

(V. Knott, Mahoney, Kennedy, & Evans, 2000). In particular, patients with decreased 

pretreatment theta have been reported to have favourable treatment outcomes (rTMS: Arns, 

Drinkenburg, Fitzgerald, & Kenemans, 2012; Iosifescu et al., 2009; V. J. Knott, Telner, Lapierre, 
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Browne, & Horn, 1996), though no theta differences in clinical outcomes were reported (Cook et 

al., 1999). Furthermore, treatment response of MDD patients has also been examined using 

quantitative EEG (QEEG) with LORETA. Studies that utilized qEEG with LORETA showed 

that medication responders tended to have elevated theta power in rostral anterior cingulate 

cortex (rACC) (Korb, Hunter, Cook, & Leuchter, 2009; Mulert et al., 2007; Pizzagalli et al., 

2018; Pizzagalli et al., 2001) and elevated medial OFC theta power (Korb et al., 2009) compared 

to non-responders. Arns & Olbrich, 2014; Jaworska & Protzner, (2013) suggested that these 

seemingly contradictory findings on theta activities (from scalp EEG and from source 

localization) came from different signal sources: decreased scalp theta (tonic theta) was 

associated to treatment non-responders while increased theta ACC (phasic theta) was linked to 

responders to medication (Arns et al., 2015; Arns & Olbrich, 2014). However, in the largest EEG 

study on MDD (n = 655) so far, Arns et al., (2015) reported that lower theta is an indicator for 

venlafaxine-XR responders, but not those to SSRI treatment. It is hard to conclude the predictive 

value of theta ACC since different interventions have been used in the studies of theta ACC. 

There might exist treatment specificity in theta activity (Arns et al., 2015).  

VIGALL  

Dysregulation of sleep and wakefulness is a core symptom of MDD (Nutt, Wilson, & Paterson, 

2008; Seifritz, 2001). However, conventional EEG measures have focused on either state of 

sleep or wakefulness, but these measures are not sensitive to sleep-awake dysregulation, an 

important symptom of MDD. VIGALL is a powerful tool allowing researchers to evaluate the 

resting EEG and electrooculogram data from full wakefulness to sleep onset (Ulrich Hegerl et 

al., 2012; Olbrich et al., 2015). According to the theoretical framework of VIGALL, hyperstable 

vigilance regulation with less declines toward relaxation is found in patients with MDD and 

obsessive-compulsive disorder (OCD), while patients with mania and attention deficit 



22 

 

hyperactivity disorder (ADHD) tended to show unstable wakefulness regulation with a rapid 

drop of vigilance levels (Ulrich Hegerl & Hensch, 2014; Ulrich Hegerl et al., 2012; Olbrich et 

al., 2013; Olbrich, Sander, Jahn, et al., 2012). Furthermore, Olbrich et al., (2016) reported that 

treatment responders had a faster decline of wakefulness while Schmidt et al., (2017) reported 

that patients with a pronounced hyperstable wakefulness regulation were more likely to respond 

to SSRI treatment. These studies, however, used different methods of recording time, which 

probably impacted on patients’ wakefulness regulation. It is therefore inadequate to draw 

conclusions from only two studies on the prognostic power of VIGALL on the treatment 

outcome.  

ERP measures 

Auditory ERP components such as P300 and LDAEP were promising candidates for predicting 

patients’ response to antidepressants (Iosifescu, 2011). P300 refers to a positivity at 300 ms after 

stimulus onset and it could be evoked by odd, infrequent stimuli in an auditory oddball paradigm. 

Patients suffering from depression were found to have smaller amplitude and prolonged latency 

of P300 compared to healthy controls (Mumtaz et al., 2015). With regard to the treatment 

response on P300, prior reports showed that patients with smaller pretreatment P300 amplitude 

tended to be non-responders to bupropion and escitalopram treatments (Jaworska & Protzner, 

2013). Although there were some inconsistencies, P300 latency has also been reported to have 

some value in treatment prediction (Işintaş, Ak, Erdem, Öz, & Özgen, 2012; Jaworska & 

Protzner, 2013). LDAEP, a means to measure the cortical activity arising from one’s auditory 

cortex, is acquired from the slope of auditory tones of increasing loudness. It has been reversely 

linked to serotonergic system in vivo (Juckel et al., 1999, 1997). Patients with higher 

pretreatment LDAEP (lower serotonin levels) were more likely to be treatment responders to 

SSRI drugs (Gallinat et al., 2000; Juckel et al., 2007; Lee, Yu, Chen, & Tsai, 2005) while the 
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ones with lower LDAEP tended to have better clinical outcome to SNRI medication (Juckel et al., 

2007).  

Other measures  

Other measures such as antidepressant treatment response (ATR) index and theta cordance have 

also been studied as predictors for patients’ response to antidepressants. ATR consists of 

prefrontal theta and alpha power from baseline and 1 week after treatment. It was reported to 

have good accuracy (> .70) in predicting response and remission (see review Iosifescu, 2011). 

Theta cordance is an EEG measure that combines absolute and relative power. Results 

demonstrated that patients with a higher theta cordance tend to respond to SSRI and venlafaxine 

(Bares et al., 2008; Cook, Hunter, Abrams, Siegman, & Leuchter, 2009). However, ATR and 

theta cordance are both “treatment emergent markers” which reflect changes in EEG measures 

one week after the treatment and cannot be assessed at baseline, and thus they have limited value 

in clinical use. More recently, connectivity was found to be associated with patients’ clinical 

response to antidepressants (Lee, Wu, Yu, Chen, & Chen, 2011). The latest findings in combing 

EEG and deep learning approaches have shown great promise in predicting the efficacy of 

antidepressants (Uyulan et al., 2020; Wu et al., 2020).  

The rationale of the NeuroPharm study  

Patients diagnosed with MDD display a wide variety of symptoms in clinical practices (Fava & 

Kendler, 2000), and the heterogeneity in MDD thus poises great challenge for treating the 

disease. The current ‘trial-and-error’ treatment approach is far from satisfactory, giving that only 

less than 50% of MDD patients achieve sufficient remission from depressive symptoms (Rush et 

al., 2006). These challenges have motivated many research teams to develop biomarkers in 

collaboration with psychiatry environments (Leuchter et al., 2009; Trivedi et al., 2016; Williams 
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et al., 2011). A number of biomarkers have been proposed by these multicentre studies, whilst 

the direct brain mechanism behind depressive symptoms, antidepressants, and serotonergic 

system as well as their interaction still remains unclear. Therefore, NeuroPharm, as a novel 

initiative, aims to not just study patients on a relatively large scale but also to provide insights on 

depression on the level of neurotransmitter (Köhler-Forsberg et al., 2020). Adopting a cross-

disciplinary design, NeuroPharm trial covers topics ranging from neurotransmitter, 

neuroimaging, cortical activation to cognitive levels to provide opportunities for cross-modal 

comparisons and thus help understand the mechanism behind depression. EEG, having been 

proved be a promising biomarker (see review Olbrich & Arns, 2013), has been associated with 

the serotonergic transmitter system (Pillai et al., 2020). Therefore, this thesis examines the 

effectiveness of pretreatment EEG as a biomarker and its clinical utility as a part of the 

NeuroPharm Trial.  
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Aims and hypotheses 

The overall aim of the study is to examine the effectiveness of EEG/ERP as biomarkers for 

predicting treatment outcome for MDD patients. The study consists of three parts: 1. We first 

evaluated the general reliability of EEG/ERP parameters on healthy controls to construct the 

methodological basis of EEG parameters. The existing dataset (reference No. 15835A) was 

designed for this purpose. 2. We collected an independent dataset (NeuroPharm: Köhler-

Forsberg et al., 2020) to directly validate the efficacy of published QEEG biomarkers, chosen 

from a recent meta-analysis (Widge et al., 2018). The dataset consisted of EEG data of 91 MDD 

patients and 35 healthy controls. 3. We further examined the diagnostic value of vigilance 

regulation and, as an exploratory attempt, the treatment effect on the parameters of vigilance 

regulation in the same dataset.  

Aims and hypotheses of study Ⅰ 

In study Ⅰ, we aimed at examining the test-retest reliability of EEG/ERP parameters on healthy 

males at four preintervention recording intervals. The purpose of study Ⅰ was to assess whether 

the drug’s impact on EEG measurements recede after a washout period (18–22 days). Blood 

serum concentrations were measured to monitor the possible carry-over effect of previous 

pharmacological drug. We hypothesized that: 1. The test-retest reliability of EEG and ERP 

measures will demonstrate at least moderate scores across four preintervention recording 

intervals. 2. The power spectrum of resting EEG will exhibit higher test-retest reliability than the 

traditional peak-picking ERP measures. 3. Amplitude measures will have higher test-retest 

reliability compared to peak latency measures. 
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Aims and hypotheses of study Ⅱ 

Since a recent meta-analysis (Widge et al., 2018) points out that direct replication of the 

published QEEG biomarkers is missing, we validated those biomarkers with our own dataset 

(NeuroPharm, Forsberg, 2020). Therefore, the aims of study Ⅱ were to replicate previous studies 

as closely as possible, in terms of the methodology, data analysis, criteria of treatment response 

and the statistical approach. We hypothesized that 1) biomarkers are possible to be validated 

when utilizing the same response criteria. 2) Biomarkers based on a large sample size is possible 

to be replicated in the current dataset. 

Aims and hypotheses of study Ⅲ 

Vigilance regulation was not analysed in the meta-analysis (Widge et al., 2018) and it has been 

deemed relevant for the diagnosis of MDD and has an impact on predicting the responses to 

depression treatment (Olbrich et al., 2016; Schmidt et al., 2017). The aims of the study Ⅲ were 

to use the data from the NeuroPharm trial (Köhler-Forsberg et al., 2020), and 1) to replicate the 

findings of a hyperstable EEG wakefulness regulation in MDD in comparison to healthy 

controls. 2) to replicate the predictive properties of the VIGALL algorithm with respect to 

treatment outcome for psychopharmacological interventions using SSRIs and SNRIs. It was 

hypothesized that 1) MDD patients will show more high vigilance stages and fewer declines 

toward sleep stages in comparison to healthy controls and 2) that as assessed with the VIGALL 

algorithm, remitters/responders will show a less stable EEG wakefulness regulation over time. 
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Methods 

Study Ⅰ was based on an existing dataset (reference No. 1583A) and study Ⅱ and Ⅲ were based 

on the data from NeuroPharm trial (registration number: NCT02869035; Trial paper: Köhler-

Forsberg et al., (2020)). Details of the methodology is given in the paper; below is a brief 

summary of the methods used in the three papers. 

Study Ⅰ: Pre-intervention test re-retest reliability of EEG/ERP 

Participants 

Thirty-two healthy male participants (mean age 33.1 ± 6.8) were recruited in the study. Women 

were excluded to eliminate the confounder effect of menstrual cycle. The inclusion criteria for 

participants were: 18–45 years of age, 18.5–30 kg/m2 body mass index (BMI) and 50–100 bpm 

resting pulse. Exclusion criteria included use of psychoactive medication, drug or alcohol abuse, 

severe drug allergy or hypersensitivity and history of any medical, psychiatric, and neurological 

(such as immunological, cardiovascular, respiratory, metabolic neurological, or psychiatric) 

disease. Written informed consent was obtained from each participant prior the study. All the 

collected data were included and analysed. 

Procedures 

Study Ⅰ was an interventional, randomized, double-blinded, four-way crossover and placebo-

controlled study. Three interventions 10 mg vortioxetine (A), 20 mg vortioxetine (B), 

15 mg escitalopram (C) and a placebo (D) were included. Each participant was randomly 

allocated into a sequence group (ABDC, BCAD, CDBA or DACB) with a washout period (20-

22 days) between interventions, resulting eight participants in each group (Figure 3). Prior each 

intervention, a bioanalysis was performed to monitor if there is leftover effect from the previous 

intervention. EEG data was recorded at the beginning of each session, before the administration 
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of intervention. Continuous EEG, auditory steady state response, auditory oddball and hybrid 

flanker Go/Nogo tasks were included as an EEG battery. 

 

 

Figure 3 Overall study design of study Ⅰ. Three interventions 10 mg vortioxetine (A), 20 mg vortioxetine (B), 15 mg escitalopram 

(C) and a placebo (D) were included. Each participant was randomly allocated to one session sequence including ABDC, BCAD, 

CDBA and DACB. After each session, there was a washout period (ranging from 18–22 days) between each session, and plasma 

concentrations was assessed to make sure a completely washed out from the previous intervention. 

EEG recording 

EEG was recorded from 28 scalp sites using a 10-20 electrode system, with a sample rate of 400 

Hz (Comet EEG system, Grass Technologies, West Warwick, RI, USA). AFz served as the 

ground and POz served as the reference. Electrooculography (EOG) and electromyogram (EMG) 

were recorded at bipolar channels for later artifact removals. Resistance across all electrodes was 

maintained at less than 5 kΩ. 

Continuous EEG 

Resting and vigilance-controlled EEG were each recorded for at least 3 min. Participants were 

told to relax, keep their eyes closed and stay awake in both conditions. They were instructed to 

press two buttons using their thumbs during the vigilance-controlled recording. There would be 

an alert sound if the participant let go of the button.  

Auditory steady state response (ASSR) 

In order to assess gamma activity, participants were presented with a 40 Hz impulse trains sound 

at 89 dB binaurally through a headset (Sennheiser HD 25-1 II pro). Each train was composed of 
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20 biphasic 1 ms clicks over a 500 ms period followed by 700 ms of silence. These trains were 

repeated for 5 min. 

Auditory Oddball 

The auditory oddball paradigm consisted of two acoustic stimuli with different frequencies: 

standard tones (500 Hz) and deviant tones (2000 Hz). Participants were asked to count the 

deviant sounds. Each session consisted of on average of 35 deviants (randomized between 30 

and 40) and 198 standards (randomized between 170 and 226). Deviant tones made up 15% of 

the presentations. The sound level for each tone was 85 dB, with duration of 100 ms and 

interstimulus-interval (ISI) of on average 1550 ms (randomized between 1200 and 1900 ms). 

The test lasted approximately 7 min. 

Hybrid Flanker Go/Nogo (Hybrid FT) 

Stimuli consisted of one of the following letter strings (BBBBB, DDDDD, VVVVV, UUUUU, 

BBDBB, DDBDD, UUVUU, or VVUVV) and were presented on a computer screen for 300 ms 

in randomized order. Participants were instructed to focus on the center letter and to press a 

button whether it was a B or a U (Go condition), and to withhold a button press when appearance 

of a D or V (NoGo condition). Each condition consisted of 420 trials, resulting 840 trials in total. 

Strings with congruent letters made up 40% of presentations, while strings with incongruent 

letters were shown in 60% of all trials. The presentation of the letter string was followed by 750 

ms for stimulus onset asynchrony (SOA) and 500 ms for feedback in response to the participants' 

performance: ‘true’ (i.e. correct and in time), ‘faster’ (i.e. correct but out of time) or ‘false’. The 

ISI was 800 ms (randomized between 600 and 1000 ms). The test lasted approximately 45 min. 

EEG data prepossessing and analysis 

Details were described in paper Ⅰ and were briefly summarized here. Eye blink and other ocular 

corrections were conducted by the ocular artefact reduction option of NeuroScan 4.1 software 
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and then were processed in the following steps: 1. Butterworth notch filtering (50 Hz) with a 

filter order of 6; 2. Continuous EEG: Butterworth band-pass (1–80 Hz) filtering with a filter 

order of 2. ERP: Butterworth band-pass (0.1–30 Hz) filtering with a filter order of 2; 3) 

Continuous EEG: re-referencing to the average electrode for continuous EEG recordings. ERP: 

re-referenced offline to the linked mastoids. 

Time-frequency analysis of all data: A complex Morlet wavelet with a bandwidth of 10 Hz and a 

center frequency of 1 Hz was applied. The wavelet frequencies ranging from 1–80 Hz with a 0.5 

Hz between-scale frequency interval. Power was acquired from the following standardized 

bands: δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz), β (12–30 Hz), γ1 (30–45 Hz) and γ2 (45–80 Hz). 

The γ band was divided into two bands to avoid muscle artefacts. Specifically, absolute power 

was calculated for the continuous EEG and evoked power was calculated for ASSR, auditory 

oddball and hybrid Flanker tasks, in which only the error commission was examined. Power 

from the three midline sites (Fz, Cz, Pz) were extracted for further analysis. Logarithm was 

applied for the normalization purpose.  

Grand average analysis of ERP data: EEG data was segmented into epochs of 1000 ms and 600 ms 

for auditory oddball and hybrid Flanker task respectively. All epochs include 200 ms pre-

stimulus baseline. Epochs were rejected if the voltage in EOG channels, Fp1, Fp2 exceeded ±75 

μV. In the auditory oddball task, the selected components and the corresponding latency 

windows for peak identification included: standard: N100 (80–140 ms), P200 (140–270 ms); 

deviant: N100 (80–140 ms) and P300 (270–550 ms). Baseline to peak measures were determined 

on three midline sites (Fz, Cz, Pz). In the hybrid Flanker task, ERN (0–250 ms) was analyzed at 

sites in the fronto-central area (Fz, Cz) and Pe (100–350ms) was analyzed at sites in the centro-

parietal area (Cz, Pz). The number of accepted epochs is shown in Table 1. 

Table 1 The number of accepted epochs for different tasks.  

 Condition BL1 BL2 BL3 BL4 p values 
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Task 

Auditory 

 oddball 

Standard 180±23(117-212) a 169±37(101-227) 167±27(97-215) 174±34(80-227) F (3,92) = 1.884, p = 0.138 

Deviant 31±5(22-38) 30±7(16-40) 29±6(12-38) 30±7(15-40) F (3,92) = 1.270, p = 0.289 

Hybrid 

 Flanker  
Error 85±35(28-180) 70±28(8-133) 67±36(8-183) 72±31(3-141) F (3,92) = 3.981, p = 0.010 

Notes. a Mean and standard deviation are reported. Minimum and maximum of epochs are provided in the brackets.  

 

Study Ⅱ and Study Ⅲ: EEG biomarkers from NeuroPharm trial 

Study cohort and treatment 

A hundred outpatients diagnosed with MDD were recruited in the NeuroPharm trial (see Figure 

4 for a flowchart of the study). The inclusion criteria included: 18–65 years of age, with 

moderate to severe, first or recurrent major depressive episode and with a minimum score of 18 

on Hamilton Depression Rating Scale 17 items (HDRS17). Exclusion criteria included clinically 

significant psychosis, severe somatic co-morbidity, current or previous psychiatric severe co-

morbidity, acute suicidal ideation and more than 2 years of duration of the current depressive 

episode. Thirty-five healthy controls were included as controls in the EEG analysis. All 

participants provided written informed consent prior to participation. Ethical approval was 

obtained by the National Committee on Health Research Ethics (protocol: H-15017713). 
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Figure 4 The flowchart of the study design of NeuroPharm trial. The definition of treatment responses of NeuroPharm was 

framed with dashed line. The treatment responses were defined as follow: Patients with ΔHDRS6 > 50% at week 4 were 

considered early responders; Patients with ΔHDRS6 < 25% at week 4 were considered early non-responders; Patients with 

ΔHDRS6 > 50% at week 4, and < 5 points on the HDRS6 scale at week 8 were considered remitters; Patients with ΔHDRS6 < 

25% at week 4 and ΔHDRS6 < 50% at week 8 were considered non-responders. Patients who were neither remitter nor non-

responder criteria were classified as intermediate responders. 

EEG recording was obtained at a pretreatment visit (before medication) and 40 of the patients 

were recorded again 8 weeks after treatment administration. EEG data were acquired prior 

treatment in 79 patients and 35 controls (please refer to Figure 4 for the exclusion reason). At 8 

weeks follow-up, EEG data from 39 patients was acquired. 

Patients were first treated with the SSRI escitalopram at flexible doses of 5–20 mg/day adjusted 

depending on effects and side effects by trained physicians. Patients with no response to 

escitalopram after 4 weeks were shifted to the SSRI/SNRI duloxetine (n = 15).  Compliance, 
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side-effects to antidepressant treatment, and depressive symptoms were monitored at each visit: 

week 1, 2, 4, 8 and 12. 

Clinical measures and treatment response 

Changes in clinical symptoms were assessed by comparing the follow-up sessions with 

pretreatment depressive scores. The HDRS6 subscale was extracted from the HDRS17 for 

defining the treatment response in the NeuroPharm trial. In detail, the treatment responses were 

defined as follow: Patients with ΔHDRS6 > 50% at week 4 were considered early responders; 

Patients with ΔHDRS6 < 25% at week 4 were considered early non-responders; Patients with 

ΔHDRS6 > 50% at week 4, and < 5 points on the HDRS6 scale at week 8 were considered 

remitters; Patients with ΔHDRS6 < 25% at week 4 and ΔHDRS6 < 50% at week 8 were 

considered non-responders. Patients who were neither remitter nor non-responder criteria were 

classified as intermediate responders. 

EEG recording 

Participants were instructed to remain still and relaxed, avoid eye-blinks and movements and to 

relax chin muscles during recording. Resting EEG was recorded during four 3 min periods with a 

counterbalanced order of OCOC (O for eyes open, C for eyes closed) or COCO between 

subjects. EEG data was recorded using a 256-channel HydroCel Sensor Net system (EGI, Inc., 

Eugene, OR) at 1000 Hz with 0.1–100 Hz analog filtering where vertex electrode served as the 

reference. Impedances of all electrodes were kept below 50 kΩ. 

EEG data analysis 

Study Ⅱ 

Study Ⅱ intended to replicate pretreatment QEEG biomarkers that have been previously found 

identified to successfully differentiate treatment responses. We selected candidate biomarkers 
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based on pretreatment QEEG biomarkers that were associated to medication and resting EEG 

from the meta-analysis (Widge et al., 2018) for validation purposes (Table 2). The study of 

(Pizzagalli et al., 2018a) was also included since it was the largest multicenter randomized 

placebo controlled clinical trial (Trivedi et al., 2016) and was published after the meta-analysis 

(Widge et al., 2018). Treatment emergent biomarkers such as theta cordance and antidepressant 

treatment response index were not applicable in NeuroPharm trial and thus were excluded from 

this analysis. Studies with alert EEG (Cook et al., 2009; Dan V. Iosifescu et al., 2009; Korb et al., 

2009) were also excluded due to different subject vigilance states were recorded. 
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Table 2 The included candidate biomarkers for replication  

Notes: 1 C refers to eyes closed, and O refers to eyes open. 2 The study did not provide information on the numbers for treatment responders/non-responders.  

Abbreviation: R, responders; NR, non-responders; SSRI, selective serotonin reuptake inhibitor; FAA, frontal alpha asymmetry; rACC, rostral anterior cingulate 

cortex; pg/ad ACC, perigenual and anterior dorsal anterior cingulate cortex; HDRS, Hamilton Depression Rating Scale; CGI-I, Clinical Global Impression 

Improvement scale; BDI, Beck Depression Inventory. 

Studies Sig. QEEG biomarkers 
Recording 

duration1 
R NR Clinical evaluation Medication Response criteria 

Arns et al. 

(2016) 

Greater FAA in R and 

better response to SSRI 

in female 

Two 2 min (CO or 

OC) 
427 240 HDRS17; Baseline, week 8 

escitalopram, 

sertraline, 

venlafaxine 

R: ≥ 50% improved on 

HDRS17. Remission: 

score of ≤ 7 on the 

HRSD17 

Bruder et al. 

(2001) 

Less right alpha than left 

in female NR 

Four 2 min (COOC 

or OCCO) 
34 19 CGI-I; Baseline, week 12 fluoxetine 

R: “Much improved” or 

“very much improved” 

on CGI-I 

Bruder et al. 

(2008) 

1. Greater occipital alpha 

in R; 2. Greater right 

hemispheric alpha in R. 

Four 2 min (COOC 

or OCCO) 
11 7 CGI-I; Baseline, week 12 fluoxetine 

R: “Much improved” or 

“very much improved” 

on CGI-I 

Pizzagalli et 

al. (2001) 

Higher rACC theta 

activity, better response 

Ten 3 min 

(COCOCOCOCO 

or 

OCOCOCOCOC) 

9 9 BDI; Baseline, 4-6 months nortriptyline 
Median split of BDI 

scores 

Pizzagalli et 

al. (2018) 

Higher rACC theta 

activity, better response 

Four 2 min (COOC 

or OCCO) 
2482 

HDRS17; Baseline, weeks 1, 2, 3, 4, 6, 

and 8 

sertraline, 

placebo 

Absolute score on 

HDRS17 

Rentzsch et 

al. (2014) 

Higher right pg/adACC 

delta in R 
≥ 10 min (C) 11 20 HDRS21; Baseline, weeks 2 and 4 various SSRIs 

R:  ≥ 50% improved on 

HDRS21 at week 4. 
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These chosen biomarkers were then validated as close as possible to the resample studies, in 

terms of EEG data analysis, clinical criteria and statistical approaches.  

Study Ⅲ 

VIGALL was adopt to the eyes closed resting EEG in order to identify and different functional 

brain states from wakefulness to sleep onset. VIGALL was an algorithm-based method that 

could automatically classified EEG epochs into the following arousal states: stage 0 (highest 

arousal), A1, A2, A3, B1, B2/3, C (lowest arousal and indicating the sleep onset). For technical 

details please refer to VIGALL manual (VIGALL 2.1 manual; https://research.uni-

leipzig.de/vigall) and here we briefly summarized. The classification method mainly based on 

the distribution of alpha cortical current density over our regions of interests (ROIs): frontal, 

central, temporal and occipital. After closing eyes, desynchronized alpha activity with the 

absence of slow eye movements (SEMs) would dominate the cortical activity (state 0). Along 

with the relaxation of the participant, synchronized alpha activity would dominate progressively 

from occipital (A1), central and frontal (A2), and to mainly frontal area (A3). Next, 

desynchronized alpha activity would appear again and replaced by low amplitude with SEM (B1) 

then dominate by delta and theta activity (B2/3). With the appearance of K-complexes and sleep 

spindles, the epochs would be an indicative of sleep onset (C). The resulting classification was 

then assigned numerically with a range from 7 (stage 0, full wakefulness) to 1 (stage C, sleep 

onset) for further calculation.  

Twenty-five channels were selected from our high-density EEG net prior calculation, which 

included: Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP6, P7, 

P3, Pz, P4, P8, O1 and O2. HEOG and VEOG were chosen as close as possible to the electrode 

locations according to the VIGALL manual. The EEG data was then down-sampled to 250 Hz 

and re-referenced to an average reference. The data was cut into 1s epochs for manually check 
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for artefacts. Eye movement artefacts were removed through independent component analysis. A 

zero-phase digital IIR Butterworth bandpass filter with cut-off frequencies (0.5–70 Hz), and an 

additional 50 Hz notch filter were applied to the data. Since no subject had any sign of sleep 

stage (stage C) and the prevalence of stages A2 and A3 have been quite low in previous studies, 

we followed the usual procedure of pooling two A stages (A2/3), resulting in five different 

vigilance stages (0, A1, A2/3, B1, B2/3). Median vigilance of each 1 min block and the vigilance 

slope of each 3 min block were reported. A positive vigilance slope indicated less decay in 

vigilance while a negative slope indicated more pronounced decrease of vigilance toward 

drowsiness. 
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Statistical analysis 

Study Ⅰ 

The statistics were divided into two parts. First, all EEG and ERP measures were analyzed with a 

linear mixed model with assigned sequence (ABDC, BCAD, CDBA or DACB) and baseline 

recordings of each session (BL1, BL2, BL3, BL4) as fixed factors. An unstructured covariate 

matrix was employed. In all the mixed models, age was included as covariate and least-square 

means were used in post hoc analyses. Main effects of session and sequence were tested using F-

tests. 

Second, the test-retest reliability was evaluated by intra-class correlation (ICC) with absolute 

agreement (Brunner et al., 2013; Hämmerer, Li, Völkle, Müller, & Lindenberger, 2013). Single 

measure ICC (A, 1) was calculated respectively by a two-way mixed random model (McGraw & 

Wong, 1996), where participant served as random variable and session served as mixed variable. 

ICC of adjacent time points and overall time variance are reported. In accordance with the 

classification of ICC levels in a previous study (Rentzsch, Jockers-Scherübl, Boutros, & Gallinat, 

2008), ICC < 0.39 would be considered poor, 0.4–0.59 fair, 0.6–0.75 good and > 0.75 would be 

considered excellent. 

Study Ⅱ 

All the statistical analyses were performed followed as they are in the resampled study, including 

the selection of models and included covariates. The included biomarkers were examined with 

both the criteria of NeuroPharm and of the resample studies. Since the rating scales of clinical 

measures from previous studies might not be included in the current study, a transformation 

between scales for treatment response was applied whenever possible (Riedel et al., 2010); 

otherwise responders were defined by at least 50% improvement of depressive symptoms as 

assessed by the HDRS17 score. One-sided p values were chosen for validation purpose.  
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Study Ⅲ 

The main outcome of VIGALL included percentages of each vigilance stage (5 states × 6 

blocks), median vigilance of each block (6 blocks) and vigilance slope (two separate eyes closed 

recordings from one session: 1st and 2nd recordings). They were correspondingly subjected to 

repeated analysis of variance (ANOVA) to determine whether there were temporal difference in 

EEG vigilance patterns 1) between pretreatment MDD and healthy controls, 2) between remitters 

and non-responders (NeuroPharm criteria) in pretreatment vigilance; between responders and 

non-responders, and remitters and non-remitters in pretreatment vigilance (iSPOT-D criteria), 3) 

between pretreatment EEG and the EEG after 8 weeks of treatment (treatment), and whether 

these vigilance patterns differ between different treatment responses with both criteria of 

NeuroPharm and iSPOT-D. The analysis of Receiver Operator Curve (ROC) was performed for 

significant discriminant on the clinical outcome. Furthermore, a correlation analysis on ΔHDRS 

scores (both ΔHDRS6 and ΔHDRS17) and vigilance slope was performed to investigate the 

vigilance effect on clinical outcome. 
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Results and discussion 

Study Ⅰ 

Is there significant difference across different recording sessions? 

Absolute power of continuous EEG 

Absolute γ1 power at BL1 was larger than the last session BL4 (17.83 vs 16.39 μV, p=.006, 

Figure 5) under vigilance-controlled recording (p values > .05). No other significant effect was 

found (p values > .05). 

 

 

Figure 5 Spectral analysis for resting state and vigilance-controlled across four pre-intervention sessions. Three midline 

electrodes (Fz, Cz and Pz) are shown for each condition. Four pre-intervention sessions (BL1, BL2, BL3 and BL4) are shown in 

different colors. 

Evoked power of ASSR, auditory oddball and hybrid flanker task  

In ASSR task (Figure 6a), smaller frontal δ and larger γ1 power was observed at BL1 compared 

to BL3 and BL4 (δ: F (3, 31) = 3.919, p = .018; γ1: F (3, 31) = 3.567, p = .025). Similarly, a 

smaller parietal δ was observed at BL1 compared to BL4 (F (3, 31) = 3.179, p = .038). Central θ 
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at BL1 was the smallest compared to other recording sessions (F (3, 31) = 4.352, p = .011), and 

central α at BL1 and BL2 were smaller than that of BL4 (F (3, 31) = 3.409, p = .03).  

In auditory oddball task (Figure 6b), standard and deviant stimuli were analyzed separately. 

Standard tone: smallest frontal δ and largest parietal δ at BL1 were observed among all recording 

sessions (F (3, 31) = 5.651, p = .003; F (3, 31) = 3.844, p = .02). Deviant tone: the frontal δ was 

larger at BL2 compared to BL3 and BL4 (F (3, 31) = 3.111, p =.04). Frontal θ at BL1 were 

smaller than BL2 and BL 4 (F (3, 31) = 3.327, p = .032). Parietal θ at BL1 was smaller than BL2 

(F (3, 31) = 3.185, p = .038).  

In hybrid Flanker task (Figure 6c), smaller central θ at BL1 and BL2 were recorded compared to 

BL3 (F (3, 31) = 3.52, p = .027). Smallest fronto-central β and γ2 was observed at BL1 

compared to other recording sessions (F (3, 31) = 3.679, p = .023; F (3, 31) = 3.219, p = .036). 

Central β, γ1 and γ2 at BL1 was smaller than BL3 (F (3, 31) = 3.297, p = .033; F (3, 31) = 4.804, 

p = .007; F (3, 31) = 3.640, p = .023).  
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Figure 6 Time-frequency demonstration for ASSR, auditory oddball and hybrid flanker tasks. Results from Fz are shown here 

since it reveals the most significant differences. Four pre-intervention sessions (BL1, BL2, BL3 and BL4) are shown in columns. 

Log-scale is shown for the frequency range. 

ERP analysis of auditory oddball and hybrid Flanker tasks 

For the standard stimuli in the auditory oddball task (Figure 7), fronto-central N100 exhibited 

larger amplitude at BL1 and BL2 than BL4 (F (3, 31) = 5.21, p = .005; F (3, 31) = 6.93, p = 

.001). Moreover, parietal N100 latency showed longer latency at BL1 than other recording 

sessions (F (3, 31) = 3.36, p = .034). No sessions effect was found for P200 amplitude and 

latency. For the deviant ERPs (Figure 7), shortest central N100 latency was found at BL4 (F (3, 

31) = 3.26, p = .034) while a shorter P300 latency was observed at BL1 compared to BL4 (F (3, 

31) = 4.13, p = .014). 

In hybrid Flanker task (Figure 7), fronto-central ERN exhibited longer latency at BL1 than at 

BL3 and BL4 (F (3, 31) = 3.78, p = .02; F (3, 31) = 6.91, p = .001). The centro-parietal Pe 

showed longer latency at BL1, BL2 than at BL3 and BL4 (F (3, 31) = 29.34, p < .001; F (3, 31) 

= 22.66, p < .001). 
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Figure 7 The mean ERP waveforms for the auditory oddball and hybrid flanker task (epoched by the error commission). Three 

midline electrodes (Fz, Cz and Pz) are shown for each task/component. Four pre-intervention sessions (BL1, BL2, BL3 and BL4) are 

shown in different colors. 

 

Our results indicated that the absolute power of continuous EEG showed less variation between 

sessions compared to task-related EEG and ERP. Also, the EEG activity at the first recording 

(BL1) contributed the most to the variations. More discussion would come after the results of 

test-retest reliability.  

Repeated ANOVA was mainly used when testing difference between two recording sessions, 

however, this traditional approach is not suitable for four sessions design. The reason is that 

ANOVA uses a compound symmetry structure to assume the covariance matrix between pairs of 

within-subject variable (Figure 8 left panel), while this is not the ideal case. Linear mixed model 

with unstructured covariance matrix is preferable because the variances of the differences 

between all possible pairs of conditions do not necessarily to be equal (Figure 8 right panel). For 

instances, the variance between BL1 and BL2 doesn’t require to be the same as BL1 and BL3 on 
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the same subject. This approach is reasonable to use given the fact that we cannot be sure if 

EEG/ERP parameters decay, increase or remain still between different recording sessions. 

  

 

 

Figure 8 A comparison of compound symmetry and unstructured covariance matrix. 

Is EEG reproducible among four pre-intervention sessions? 

Absolute power of continuous EEG 

The results of ICCs showed excellent test-retest reliability (0.84–0.97, Figure 9) at adjacent 

sessions in the frequency bands of θ, α and β at midline electrodes. However, the lower and 

higher ends of the frequency bands demonstrated more variances (Figure 9). 
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Figure 9 Intra-class correlation coefficient (ICC) for continuous EEG across four pre-intervention sessions. Midline θ, α and β 

show excellent test-retest reliability (0.84–0.97). Mean and confident intervals for ICCs are shown in the figure. 

Evoked power of ASSR, auditory oddball and hybrid flanker task  

Compared to continuous EEG (Figure 9), the test-retest reliability of ERP tasks was clearly less 

stable over time.  

For the ASSR task, midline γ1 –which contains the stimulation frequency– exhibited fair to 

excellent reliability for both adjacent sessions and across time (.57–.86, Figure 10). Standard 

tone was more robust than deviant tones, but also with large variation between sessions. Midline 

β and γ1 revealed fair to excellent levels of reliability for both adjacent sessions and across time 
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(0.44–0.85). For the deviant tones, the ICCs of δ were in the range of good to excellent (0.63–

0.83). For the error response of the hybrid flanker task, the ICCs of θ exhibit better reliability 

compared to other bands (0.50–0.85). 

 

Figure 10 Intra-class correlation coefficient (ICC) for ASSR, auditory oddball and hybrid flanker tasks across four sessions. 

Power measures of tasks related EEG were less robust compared to continuous EEG. Mean and confident intervals for ICCs are 

shown in the figure. 

ERP analysis of auditory oddball and hybrid Flanker tasks 

Late components such as P300 amplitude (0.55–0.80), P200 (0.49–0.83) and Pe (0.60–0.82) had 

good to excellent reliability (Figure 11). Latency measures were less stable compared to 

amplitude measures in general. 
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Figure 11 Intra-class correlation coefficient (ICC) for peak amplitude and latency measures of auditory oddball and hybrid 

flanker tasks across four pre-intervention sessions. Later components such as P300, P2 and Pe have higher test-retest reliability 

compared to other early components. Amplitude (Amp) measures are more reliable than latency (Lat) measures. Mean and 

confident intervals for ICCs are shown in the figure. 

In study Ⅰ, we are first to report the test-retest reliability of continuous EEG, ASSR, auditory 

oddball and hybrid Flanker tasks over four pre-intervention sessions while previous studies have 

mainly conducted with two sessions. We found that the absolute power of continuous EEG 

demonstrated excellent reliability in the middle frequency bands (θ, α and β), while evoked 

power of ERP tasks exhibited more variances over time. Regarding to the peak-picking and 

latency measures, we found that late components (P300, P200, Pe) had higher reliability 

compared to those early components (N1, ERN). Latency measures was unstable over time 

compared to other measures. Our results provide evidence that these EEG/ERP parameters are 

reliable across three-week intervals and thus are sufficiently reliable for future investigations. 

For the power analysis, our results suggest that the middle frequency bands have higher 

reliability than the edge bands in both EEG and ERP data. Our findings duplicated the finding of 

Gudmundsson, Runarsson, Sigurdsson, Eiriksdottir, & Johnsen, (2007), which also showed that 

the δ and γ bands were less reliable than the other bands. On the contrary the study of Williams 
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et al., (2005), researchers reported that lower frequency bands, as δ, θ, tend to have higher 

reliability than α and β bands. They suggested that the discrepancies might be due to different 

time intervals between recordings. We argue that the length of session intervals might not be the 

main reason, but that the noise level is. The γ band has been divided into two bands in our 

analysis in order to avoid the noise coming from the muscle activity and the main power source. 

This results in γ1 (with less noise blended in) having higher test-retest reliability than γ2 (Figure 

9). Since these two bands share the same session intervals but have different reliability, we 

hypothesize that the different noise levels influence the reliability. With regard to the reliability 

of ASSR, there have been only a few studies that have investigated it (80 Hz-ASSR: (Kaf, Sabo, 

Durrant, & Rubinstein, 2006); 40 Hz-ASSR: (McFadden et al., 2014)). Little is known about the 

reliability of power spectra, even though it is the main purpose of this paradigm to see the 

changes in the γ band. The results suggest that ASSR measures are highly stable over time. Our 

results on the reproducibility of ASSR extend the current findings by presenting the power 

spectra of ASSR measure. 

The reliability of ERP data is affected by various factors (Brunner et al., 2013; Larson, Baldwin, 

Good, & Fair, 2010), resulting in less stable reliability compared to power measures. We found 

that the reliability of ERP measures is affected by the size of the components. Smaller-sized 

components such as N100 and ERN exhibit lower reliability relative to larger-sized components, 

P300 and Pe (Figure 11). This discrepancy could be caused by the different SNRs existing in 

different sizes of ERP component (Luck, 2005). Increasing the number of averaged trials and a 

better control of artefacts could increase the SNR for ERP components (See exploratory analysis 

in paper Ⅰ). Higher SNR for small components could notice future studies for reaching high or 

comparable reliability as large components.



 
 

 

49 

 

Study Ⅱ 

Of those who completed the study, the remission rate (assessed using the criteria from 

NeuroPharm) and response rate (≥ 50% improvement of depressive symptoms on HDRS17 score) 

were 26.58% and 55.70%. 

We found that only two out of six candidate biomarkers could be partially replicated (Table 3). 

These two biomarkers both involoved alpha asymmetries: frontal alpha asymmetry (FAA) and 

alpha asymmetry.  

FAA: After the exclusion of patients with low serum concentrations and patients with duloxetine 

(remaining n = 35), we found a significant gender-specific partial correlations between FAA 

score and HDRS6 scores were found at week 8 (r (30) = -0.29, pone-tailed = .048) and for the 

improvement at week 8 (r (30) = 0.32, pone-tailed = .036) in eyes closed condition (Figure 12a), as 

well as in eyes open condition (HDRS6: r(30) = -0.28, pone-tailed = .060; ΔHDRS6: r (30) = -0.31, 

pone-tailed = .041). Consistent with prior report of FAA (Arns et al., 2016) , this association 

between treatment response and FAA was only found in female patients but not male. 

Mean alpha asymmetry: When testing the mean alpha asymmetry (Bruder et al., 2001), log alpha 

powers at three regions (frontal, central and posterior) were subjected to repeated ANOVA 

without taking the average across three regions. We found a greater right posterior alpha in male 

non-responders (both NeuroPharm and criteria of the previous study, F (2, 64) = 3.87, p = .041; 

F (2, 150) = 4.31, p = .025) and a less right central alpha in female non-responders (only found 

when the criterion of the previous study was applied (Figure 12b). 
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Figure 12 a. Female patients who have higher pretreatment FAA score (right dominated FAA) are associated with lower 

depressive symptoms at week 8 (Figure 12a left panel). Also, pretreatment FAA scores are positively (right dominated FAA) 

associated with patients’ improvement on ΔHDRS6 at week 8 (Figure 12a right panel). Grey areas indicate 95% confident 

intervals for the fitted lines. b. Mean alpha asymmetry shows a gender difference on the treatment response when the criterion of 

the study of Bruder et al. (21) was examined. Error bars indicate standard deviations. Female responders have greater central 

alpha asymmetry (right > left) than female non-responders while male responders have lower posterior alpha asymmetry (right < 

left) than male non-responders.  

Note: *: p < .05. 

We observed a gender-specific effect for alpha asymmetry, in line with the literature (Arns et al., 

2016), demonstrating that greater right FAA indicates lower HDRS6 score and better 

improvement of depressive symptoms at week 8 in female patients. Furthermore, female non-

responders showed an opposite asymmetry at the central sites. Our results might indicate that 

there exists a gender-related lateralization in the serotonergic neurotransmitter system, which 

modulates the effect of an antidepressant. A recent study reported that the sex-specific cortical 

lateralization is associated with 5-HTTLPR (serotonin-transporter-linked polymorphic region) 

genotype (Volf, Belousova, Knyazev, & Kulikov, 2015). Moreover, in the study of Volf et al., 

(2015), researchers revealed that the 5-HTTLPR polymorphism affects lateralization in healthy 

female. Furthermore, previous studies, measured by PET, have also found sex differences in 

cortical asymmetry of both the serotonin transporter (Kranz et al., 2014) and the serotonin 1A 

binding (Fink et al., 2009). Future investigations on sex-related asymmetry on serotonergic 

system could help the understanding of this observation. 
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Theta current source density: The current results revealed an opposite direction of ACC theta 

(see Figure 13a for the chosen Montreal Neurological Institute (MNI) coordinates) compared to 

previous study (Pizzagalli et al., 2001). We found a higher ACC theta in non-responders 

compared to remitters (F (1, 33) = 5.10, p = .03, Figure 13b). A negative correlation was found 

when correlating ACC theta and the improvement of depressive scores at week 8 (ΔHDRS6: r 

(44) = -0.21, p = .085). No such effect was found when the criteria of the resampled study was 

being assessed (p values > .05).  

 

Figure 13 a. The visualization of the chosen MNI-coordinates (view angle: [X, Y, Z] = [7, 35, 16] mm). Theta power was 

extracted from a rACC cluster (identical 14 voxels from (Pizzagalli et al., 2018b; Pizzagalli et al., 2001), highlighted as red) and 

delta power was extracted from pg/adACC (identical 22 voxels from (Rentzsch, Adli, Wiethoff, Gómez-Carrillo De Castro, & 

Gallinat, 2014), highlighted as yellow). b. Theta activity at rACC cluster (red blocks) for both response criteria: NeuroPharm and 

the previous study (Pizzagalli et al., 2001). Logarithmic theta current source density was extracted from rACC using eLORETA. 

When the criteria of NeuroPharm was assessed, the results showed a significant higher ACC theta in non-responders compared to 

remitters. No such difference was observed when the criteria of the resampled study was assessed. Data were visualized the same 

way as the resampled study (Pizzagalli et al., 2001). 

Note: *: p < .05. 

Inconsistent with prior studies (Korb et al., 2009; Mulert et al., 2007; Pizzagalli et al., 2018;  

Pizzagalli et al., 2001; Rentzsch et al., 2014), we did not find that higher slow-frequency activity 
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at ACC was associated with response. Conversely, the results demonstrated that remitters had 

lower theta activity at ACC compared to non-responders (Figure 13b). The inconsistency could 

not be caused by the different analysis approaches, i.e. whole brain vs. ROI analysis, for which 

the latter approach would maximize the possibility to detect any group effect. Both measures 

have been used previously to report the effects of theta ACC (whole brain: (Pizzagalli et al., 

2001); ROI-based analysis: (Pizzagalli et al., 2018)). Moreover, it would also be unlikely to 

show the opposite direction by adapting whole brain analysis in the current dataset. Despite this, 

we reran the analysis with whole brain voxel-by-voxel comparison with the same statistical 

method as earlier studies (Pizzagalli et al., 2001; Rentzsch et al., 2014)for both delta and theta 

bands. No significant result was observed for any group effects (p values > .05). The results 

indicated that theta activity at ACC might not serve as a reliable biomarker, resulting from the 

failure in the current replication. Furthermore, the fact that theta ACC could not differentiate 

responders of actual antidepressant and placebo receivers (Korb et al., 2009; Pizzagalli et al., 

2018)dampened the effectiveness of using it as a prognostic biomarker with clinical value. 

Nevertheless, our results are consistent with the finding from one of the largest qEEG studies on 

depressed individuals so far, the iSPOT-D, in which they also reported a lower theta activity for 

treatment responders. One possibility could be that lower theta ACC is an indicator to SNRI 

antidepressant responder. In the study of Arns et al., (2015), they reported significant lower theta 

for venlafaxine-XR responders but not for SSRI treatments. This was confirmed by our data, 

theta ACC was found for responders only when duloxetine receiver was included, the effect 

disappeared when excluding this part of patients. There seems to exist treatment specificity on 

theta activity in relation to treatment response, as proposed by Arns et al., (2015). Future studies 

are needed to investigate whether pretreatment theta ACC could be a specific differential 

indicator to different types of antidepressants.   
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Table 3 Summary of replication results of study Ⅱ 

Notes: 1 The analysis was kept as close to the resampled study as possible. 2 To allow comparison with previous study, both results from the criteria of NeuroPharm 

and of the previous studies were reported. 3An opposite effect was found. 

Abbreviation: ANOVA, repeated-measures analysis of variance; FAA, Frontal alpha asymmetry; ACC, anterior cingulate cortex; HDRS, Hamilton Depression Rating 

Scale. 

Study Statistical analysis1 Included covariates 

Results2 

Criteria of 

NeuroPharm 

Criteria of the 

previous study 

Arns et al. 

(2016) 

Primary: ANOVA with FAA score under different conditions 

and responses’ groups. Sex-specific effect on female patients. 

Secondary: Partial correlation between FAA and HDRS scores. 

Exploratory: ANOVA with hemisphere and groups.  

Age, sex, pretreatment anxiety 

level and pretreatment HDRS 

score. Age and sex were included 

in the exploratory analysis. 

Partial replication: 

Greater right FAA, 

better response in 

female 

No replication 

Bruder et al. 

(2001) 

Primary: ANOVA with alpha power (overall and high alpha) 

on both hemisphere, groups and sex were tested.  

Exploratory: ANOVA with regions (anterior, central, 

posterior), hemisphere, groups and sex were tested. 

Not applicable No replication 

Partial replication: 

Less right central 

alpha in female NR 

Bruder et al. 

(2008) 

Primary: ANOVA with hemisphere and condition and groups. 

Possible handedness effect on right-handed patients were 

examined. 

Number of years of education No replication No replication 

Pizzagalli et 

al. (2001) 

Primary: ANOVA with narrow ACC theta (14 voxels) and 

groups. 

Secondary: Pearson correlation between ACC theta and HDRS 

scores. 

Not applicable No replication3 No replication 

Pizzagalli et 

al. (2018) 

Primary: Partial correlation between ACC theta (narrow and 

broad theta) and the ΔHDRS at week 8. 

Age, sex, race, marital status, 

employment status, pretreatment 

anxiety level and pretreatment 

HDRS score3 

No replication3 No replication3 

Rentzsch et 

al. (2014) 

Primary: ANOVA with ACC delta (22 voxels) and groups.   

Secondary: Pearson correlation between ACC delta and 

ΔHDRS at week 4.  

Not applicable No replication No replication 
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Study Ⅲ 

Sociodemographic characteristics between patients and controls, and clinical outcome at week 8 

with criteria of NeuroPharm and iSPOT-D were shown in Table 4.  Numerical results of 

vigilance parameters at pretreatment visit and at week 8 can be found in Table 5.
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Table 4 Descriptive characteristics at pretreatment visit and the clinical outcome at week 8 

Notes: 1 HDRS6 scores are shown in both pretreatment and week 8 HDRS6 scores 
2 HDRS17 scores are shown in both pretreatment and week 8 HDRS17 scores  
3 Healthy controls had a significant higher education score compared to MDD (t (98) = -2.607, p = .011) 
4 Responders were defined by at least 50% improvement of depressive symptoms assessed by HDRS17 score. HDRS17 scores are shown in both pretreatment and week 8 

HDRS17 scores 
5 Between group comparisons showed that remitters had significant lower HDRS6 score at week 8 compared to non-responders (t (34) = -12.71, p < .001); responders had 

significant lower HDRS17 score at week 8 compared to non-responders (t (77) = -11.90, p < .001). No significant was found for other demographic characteristics (p values 

>.05). 

Abbreviation: GAD10, generalized anxiety disorder-10 score; HDRS, Hamilton Depression Rating Scale. 

 

 Pretreatment visit Clinical outcome at week 8 

 
 NeuroPharm1 iSPOT-D 2 

 

Healthy controls MDD Remitters Non-responders Responders4 Non-responders4 

N 35 91 21 15 44 35 

Sex (M/F) 10/25 25/66 11/10 4/11 16/28 6/29 

Age (Mean±SD) 29.0±9.7 27.4±8.3 29.4±9.7 25.7±9.3 28.5±8.8 25.5±7.2 

Education 16.0±1.4 14.9±2.23 15.8±1.3 14.8±2.3 15.2±1.9 14.6±2.5 

GAD10  22.9±9.7 22.3±8.5 22.1±8.6 23.4±7.9 22.1±10.3 

Pretreatment HDRS   
 

12.4±1.71 

(22.9±3.42) 
11.8±1.6 11.4±1.8 23.0±3.5 22.1±3.0 

Week 8 HDRS   2.4±1.3 10.1±2.45 7.0±3.3 17.5±4.55 
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Table 5 Vigilance parameters at pretreatment visit and at week 8 

Notes: * p < .05, age was included as covariate in all models 

 Pretreatment visit Clinical outcome at week 8 

 
 NeuroPharm1 iSPOT-D2 

 

Healthy controls MDD Remitters Non-responders Responders Non-responders 

Stage 0 (%, Mean±SD) 13.7±3.3 15.3±2.1 14.2±5.1 22.6±6.0 16.2±3.4 15.3±3.6 

Stage A1  32.6±5.7 36.3±3.5 36.1±7.7 35.4±9.2 35.2±5.3 37.0±5.7 

Stage A23  10.1±3.2 14.1±2.0 14.1±3.9 6.1±4.6 13.0±3.3 17.1±3.5 

Stage B1  34.8±4.4 26.4±2.7 23.2±5.5 23.6±6.6 27.7±3.9 22.0±4.1 

Stage B23  8.8±2.4 7.8±1.5 12.4±4.8 12.4±5.7 7.9±2.4 8.5±2.6 

Median vigilance (Mean±SD) 4.07±0.15 4.27±0.93 4.24±0.25 4.31±0.30 4.28±0.15 4.30±0.16 

Vigilance slope at 

1st recording (Mean±SD) 
-0.26±0.43 -0.02±0.50* -0.09±0.39 0.03±0.68 -0.11±0.48 0.13±0.54* 

Vigilance slope at 

2nd recording (Mean±SD) 
-0.01±0.51 0.05±0.43 0.10±0.24 0.16±0.56 0.10±0.38 0.06±0.42 
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Vigilance dysregulation in MDD 

As expected, we observed a less declines in vigilance slope in pretreatment MDD compared to 

healthy controls (F (1, 123) = 4.59, p = .034, Figure 14).  

 

Figure 14 Vigilance slope for two separate eyes closed recordings. Left panel: pretreatment MDD had less decline toward sleep 

stage compared to healthy controls. Right panel: pretreatment responders defined by iSPOT-D criteria showed faster declines on 

vigilance slope compared non-responders in the first 3 min recording. 

Our results confirm that patients suffering from MDD show a more rigid vigilance regulation 

during rest (Hegerl et al., 2012; Olbrich, Sander, Minkwitz, et al., 2012). The hyperstable 

wakefulness may reflect the difficulties of depressed patients to fall asleep. Because of 

consistently having high inner tension, MDD patients may try to counteract it by avoiding 

arousing activities (Hegerl et al., 2012) resulting in at behavioural level a lack of drive. Losing 

the ability to experience pleasure in activities is also a key symptom in depression. On the other 

hand, in comparison to prior long recording resting EEG (15 min), our results support that the 

vigilance dysregulation can be assessed in a relatively short EEG recording window, i.e. 3 min. 
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This short window opens op the feasibility of vigilance-informed prescription in future clinical 

use.  

VIGALL as predictor for clinical outcome 

We found that responders defined by iSPOT-D criteria had more pronounced declines toward 

sleep stage compared to non-responders in the first 3 min recording (F (1, 76) = 4.16, p = .045, 

Figure 14). However, the area under curve of ROC was only .60 (p = .12). No significant result 

was found when NeuroPharm criteria was being assessed (p values > .51).  

This is the first independent replication of treatment prediction using EEG vigilance measures 

and found that faster declines of wakefulness regulation are linked to better clinical outcome. 

This is consistent with the largest multisite EEG study on treatment prediction on MDD (n = 

599) (Olbrich et al., 2016). However, the current study could only replicate the association 

between the slope of vigilance and the response to SSRI treatment when using the same criteria 

of clinical outcome as they did in the previous study (Olbrich et al., 2016). The replication did 

not apply when the NeuroPharm criteria was being assessed. This heightens the importance of 

using the same outcome measures when comparing studies (Widge et al., 2018).  

Treatment effects on VIGALL parameter 

We compared the wakefulness before and after drug administration and found that depressed 

patients in general had a higher amount of stage B1 (F (4, 152) = 3.11, p = .026, Figure 15) after 

8 weeks of SSRI/SNRI treatment compared to pretreatment EEG, regardless of their clinical 

outcome.  
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Figure 15 Vigilance regulation changes after 8 weeks on SSRI/SNRI treatment. Depressed patients had a higher amount of B1 

stage 8 weeks after treatment.  

Next, we investigated whether the treatment effects on patients would perform differently 

between different clinical outcomes. Interestingly, we found that only patients with good 

treatment response had higher amount of stage B1 after 8 weeks of treatment (Figure 16). This 

treatment effect further revealed a normalization pattern towards healthy controls. Before drug 

administration, there was lower percentage of stage B1 between depressed patients and controls, 

as well as patients with good response and controls. While the difference at stage B1 was 

disappeared after 8 weeks of treatment (Figure 16).  



60 

 

 

Figure 16 Vigilance regulation changes at stage B1 after 8 weeks on SSRI/SNRI treatment on different clinical outcome. Only 

patients with good clinical response (remitters/responders) showed a higher amount of stage B1 after 8 weeks of treatment. This 

improvement was not found on non-remitters and non-responders.  

This is the first evidence to show the SSRI/SNRI treatment effect on patients suffering from 

MDD. Our results demonstrated that depressed patients with good clinical response had 

increased downregulation of EEG-vigilance after 8 weeks of SSRI/SNRI treatment, regardless of 

clinical criteria of treatment responses. The effect was normalized towards the vigilance patterns 
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of healthy controls. This was not found on non-responders and non-remitters (neither the 

NeuroPharm nor iSPOT-D criterion). Intriguingly, the treatment effect was only restricted to the 

stage B1, a brain state between alpha-dominated period and the occurrence of slow wave activity 

just before sleep onset. It may hypothesize that SSRI/SNRI treatment helps patients to pass 

through these desynchronized stages and to achieve recreational rest. 
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Methodological considerations  

Only male subjects were included when assessing the reliability of EEG parameters  

We excluded women when testing the test-retest reliability of EEG parameters in study Ⅰ. The 

main reason was to avoid the possible confounder of the menstrual cycle, which might result in 

lower reliability of data. Previous studies have demonstrated changes in ERPs across menstrual 

cycles (O’Reilly, Cunningham, Lawlor, Walsh, & Rowan, 2004; Walpurger, Pietrowsky, 

Kirschbaum, & Wolf, 2004), but the effects of different menstruation phases and the relation 

between phases and individual ERPs remain unclear. For instance, no significant effect of the 

menstrual cycle could be detected on the P300 in the study of Walpurger et al., (2004), while 

greater P300 amplitude during menses was observed in the study of O’Reilly et al., (2004). To 

control the variables in our research, we therefore excluded women from our recruited 

population. The exclusion, on the other hand, could lower the generalizability of our data.   

Inconsistent results when different scales or clinical criteria were assessed 

When examining the association between HDRS6 and the treatment response at week 8, we 

could not see the same effects as when HDRS17 was applied. Null effects were reported for 

HDRS17 when assessing the association between FAA and symptom improvement at week 8 

(study Ⅱ). The inconsistency might indicate that the HDRS6 subscale is more sensitive to frontal 

alpha asymmetry and the treatment outcome. As pointed out in earlier reports, HDRS6 subscale 

has an advantage for excluding three negative side effects (item 12–somatic symptoms, 

gastrointestinal; item 14–genital symptoms; and item 16–loss of weight), and thus, it could result 

in a larger power compared to when HDRS17 was applied on different antidepressant responses 

(Bech et al., 2010, 2006; Østergaard et al., 2016). The exclusion of the less relevant items should 

enlarge the detection of the treatment effect. Likewise, the results on theta ACC demonstrated 
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that a significant difference in treatment responses was only present when HDRS6 was used, but 

not when HDRS17 was used. To sum up, HDRS6 subscale might be capturing the key items 

reflected in alpha asymmetry and theta ACC and including more items could obscure the effect. 

Therefore, HDRS6 should be favoured in detecting the subtle differences in physiological signals 

of treatment responses and it could be beneficial to studies with a small sample size.  

The variance of Alpha peak frequency between participants  

Alpha frequency seems to play an important role in predicting clinical outcome in MDD. 

Patients with right dominant alpha are more likely to benefit from SSRI treatment (study Ⅱ) and 

alpha is also a crucial factor that contributes to VIGALL classification (study Ⅲ). The classic 

alpha defined range is 8–12 Hz. However, it is noteworthy that alpha peak frequency (APF) 

could vary from person to person and in some cases, APF could happen below 8 Hz (Van 

Beijsterveldt & Van Baal, 2002). In those cases, traditional power extraction would miss the 

synchronized alpha activity. Besides APF’s potential as an endophenotype, previous studies have 

linked APF to psychiatric disorders and found that  it tends to have serious medical implications 

for patients with slow alpha activity (Boutros, 1996). Furthermore, prior evidence has shown that 

patients with pretreatment for slow APF are more likely to be clinical responders to sertraline 

(Arns, Gordon, & Boutros, 2017) and APF seems to be faster in responders after 4 weeks of 

pharmacotherapy (Ulrich et al., 1984). Therefore, individual adjustment should be considered 

when alpha frequency is being used as a predictive biomarker. In our application, APF was 

identified and adjusted on the individual level in VIGALL measures and the defined range of 

alpha spanned below 8 Hz in the calculation of frontal alpha asymmetry. However, the 

adjustment was not performed when general alpha frequency was assessed, thus the present 

results could have overlooked the synchronized alpha activity in patients with different clinical 

outcomes.  
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Drug effect or the condition of the patient 

Since there was no placebo included in the NeuroPharm trial, we do not know for sure whether 

the treatment effect at vigilance regulation (study Ⅲ) is due to the use of the drug itself or simply 

to the condition of the patient. Patients could have lowered vigilance and an increase of 

downregulated vigilance after the 8-week time course, or the clinical condition (remitters or 

responders) could result in an improvement in vigilance measures. However, preclinical studies 

showed that depressed symptoms at behavioural level are associated with an increased firing rate 

of the locus coeruleus (LC), where most of the noradrenergic neurons are located (reviewed by 

Hegerl & Hensch, 2014). SSRI treatment and most of other antidepressive measures could 

decrease the firing rate of the LC and thus decrease the vigilance states. Future investigations on 

the drug’s real effect on vigilance measures could help bring some certainty.  
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Conclusion and future research perspectives 

Our findings underscore the importance of reliability and replicability of EEG biomarker before 

it can be used in clinical practise. Spontaneous (resting) EEG is highly reliable over time and 

could be used for assessing pharmacological intervention with CNS effects. Its reliability is a 

useful feature of a candidate biomarker. Alpha asymmetry and vigilance measures, acquired 

from resting EEG, are associated with the clinical response to SSRI/SNRI treatment. In study Ⅱ, 

we found that female patients with a greater left frontal activation seem to benefit more from 

pharmacological treatments. Patients with rigid vigilance regulation are less likely to respond to 

escitalopram/duloxetine treatments. Furthermore, vigilance regulations of responders and 

remitters normalize towards the profiles of healthy controls after successful treatment.  

Given that the EEG studies included here are replication studies, the use of EEG as biomarkers is 

thus reliable enough to be included in the treatment process and could aid its selection. Our 

findings therefore encourage an EEG-informed treatment strategy in a shared decision process, 

including:  

1) Apply EEG recording (following the International Pharmaco-EEG Society guidelines: Jobert 

et al., 2012) on patients prior a treatment decision. 

2) Identify alpha asymmetry and vigilance measures on the patients. 

3) Female patients with right dominate frontal alpha should be given escitalopram. 

4) Patients with faster decline toward lower vigilance stages should be given escitalopram. 

5) Initiate other treatments than SSRI for female patients with greater left central alpha. 

6) Initiate other treatments than SSRI for male patients with greater right posterior alpha. 

7) Initiate other treatments than SSRI for patients with rigid vigilance profiles. 
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8) Assess treatment efficacy of novel drugs for patients without the profile of serotonin 

dysfunction, such as drugs that do not target the serotonergic system. 

Future prospective trials with larger samples are needed to develop a more complete drug 

stratification program. These samples, especially, should include patients who are non-

responders to escitalopram, which is often considered as the first-line treatment. Better treatment 

approaches should be developed to improve patients’ response and remission rates. Moreover, 

the treatments included in the current research had mainly focused on standardized 

antidepressants such as sertraline, escitalopram, duloxetine and venlafaxine. The future strategy 

of EEG-informed prescription would benefit from involving more antidepressants as prior 

evidence of biomarkers have shown a certain level of treatment specificity. Furthermore, it is 

possible that biomarkers originated from cross-modalities could provide a more precise treatment 

selection strategy. Such integration, as a yet unexplored advantage of NeuroPharm trial, could 

provide us the opportunity to better understand the underpinning neural correlates of depressed 

symptoms and the treatment response prediction in MDD. Last but not least, several biomarkers 

have been investigated using the state-of-the-art tools such as MR, PET and EEG. However, the 

clinical outcome of treatments is still based on multidimensional scales (Faries et al., 2000; 

Gibbons, Clark, & Kupfer, 1993). This may reduce the validity to detect the true treatment 

response of symptoms. For instance, patients could have adequate improvement on specific 

depressive symptoms (even core symptoms) while the responses might be neglected by a 

practitioner giving a judgement based on overall scores. Future development of biomarker 

should rely on specific depressive symptoms rather than the gross outcome of current diagnosis 

instruments.  
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ABSTRACT  
 
In this study we present the test-retest reliability of pre-intervention EEG/ERP (electroencephalogram/event-related potentials) 

data across four recording intervals separated by a washout period (18–22 days). POz-re-cording-reference EEG/ERP (28 sites, 

average reference) were recorded from thirty-two healthy male partici-pants. Participants were randomly allocated into 

different intervention sequences, each with four intervention regimens: 10 mg vortioxetine, 20 mg vortioxetine, 15 mg 

escitalopram and Placebo. We report classical EEG spectra: δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz), β (12–30 Hz), γ1 (30–45 

Hz) and γ2 (45–80 Hz) of resting state and vigilance-controlled, and of auditory steady state response, as well as ERP 

components N100, P200 and P300 in auditory oddball task and error related negativity (ERN) and error positivity (Pe) in 

hybrid flanker task. Reliability was quantified using intra-class correlation coefficient (ICC). We found that θ, α and β of 

continuous EEG were highly reliable (ICCs ≥ 0.84). Evoked power of other tasks demonstrated larger variability and less 

reliability compared to the absolute power of continuous EEG. Furthermore, reliabilities of ERP measures were lower 

compared to those of the EEG spectra. We saw fair to excellent reliability of the amplitude of the com-ponents such as Pe 

(0.60–0.82) and P300 (0.55–0.80). Moreover, blood tests confirmed that there was no measurable drug carry-over from the 

previous intervention. The results support that EEG/ERP is reliable across four recording intervals, thus it can be used to 

assess the effect of different doses and types of drugs with CNS effects.  
 

 
 
 
 
1. Introduction 
 

Electroencephalography (EEG) provides a noninvasive method to 

measure electrical activity of the brain with high temporal resolution. The 

technique has shown great potential in clinical practice to monitor and access 

the intervention effects in diagnoses such as depression (Mulert et al., 2007; 

Tenke et al., 2011), Alzheimer (Brassen and Adler, 2003; Yener et al., 2007) 

and attention-deficit/hyperactivity disorder (ADHD) (Loo et al., 2000). 

 

With the increased use of EEG and ERP in clinical practice, a sys-tematic 

investigation of EEG and ERP reliability becomes more im-portant, 

especially for commonly-used paradigms (e.g. resting state EEG 
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and an auditory oddball task). Previous studies have investigated the 

reliability of EEG and ERP in various paradigms including resting state EEG 

with eyes-closed (Corsi-Cabrera et al., 2007) and eyes-opened (Williams et al., 

2005), ERP components in an auditory oddball task (Williams et al., 2005), a 

working memory task (McEvoy et al., 2000) and a Sternberg task (Cassidy et 

al., 2012). These studies showed that a fair reliability of EEG and ERP could 

be obtained but that reliability could also be affected by various factors. For 

example, the reliability of EEG is affected by the epoch length of resting EEG 

(Gudmundsson et al., 2007), recording intervals (Sandman and Patterson, 

2000), different reference schemes (Towers and Allen, 2009), and different 

aspects of the same EEG indicator (Tenke et al., 2018). In the study of 

Towers and 
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Allen (2009), different reference schemes including online reference, re-

referencing to linked-mastoids and average were compared for the reliability 

of frontal α asymmetry. Their results showed that linked-mastoids 

demonstrated greater reliability than other reference schemes, while other 

reference schemes still exhibited excellent split-half relia-bility (> 0.9). 

Different spectral parameters were compared, and showed that both absolute 

and relative power are reliable parameters (Fernandez et al., 1993). In a recent 

study, researchers assessed the temporal stability of different aspects of 

posterior EEG α over twelve years (Tenke et al., 2018). They suggested that 

lower reliability of net α (eyes closed-plus-open) and α asymmetry might 

result from additive errors when separating the α estimates. For ERP studies, 

there is ac-cumulating evidence showing that ERP amplitudes have higher 

relia-bility than ERP peak-latency measures (Cassidy et al., 2012; Walhovd 

and Fjell, 2002; Weinberg and Hajcak, 2011), which might be a result of the 

considerable variations in peak-latency detection. These varia-tions could be 

due to individual differences in information processing efficiency or induced 

by the appearance time of the peak amplitude, thus lowering the test-retest 

reliability. Since the replication of results is not always guaranteed within the 

field, it is essential to assess the re-liability of EEG and ERP measurements. 

 

 

Among all the factors that could affect reliability, the number of recording 

sessions bring the biggest challenge to clinical application as it is almost 

impossible to maintain consistency between or within subjects. So far, a 

number of studies have investigated the reliability of EEG and ERP over both 

shorter (days: (McEvoy et al., 2000); weeks: (Cassidy et al., 2012; Hämmerer 

et al., 2013; Huffmeijer et al., 2014)) and longer recording intervals (months: 

(Brunner et al., 2013; Näpflin et al., 2007); years: (Sandman and Patterson, 

2000; Tenke et al., 2018)). Sandman and Patterson (2000), evaluated ERP 

reliability in the para-digm of a dual rare-event over a three-year period and 

found that ERP measurements of adjacent years (e.g. Year 1 & 2) are more 

similar than ERP measurements of nonadjacent years (Year 1 & 3). 

Meanwhile, the test-retest reliability of resting EEG was not affected by the 

recording intervals (Corsi-Cabrera et al., 2007). One might argue that this in-

consistency could be a result of different lengths of time (3 years vs. 9 months) 

during which the results were evaluated. Another possibility could be that 

different quantifications were investigated, i.e. EEG vs ERP. It could be 

possible that measures of EEG are more reliable than ERP measures, thus 

manifesting higher reliability over time. In the study of Williams et al. (2005), 

they reported high to excellent relia-bility for EEG power while only fair to 

excellent reliability for ERP measures. Furthermore, it is unclear how EEG 

and ERP vary across multiple recording intervals since only a few studies 

have reported the reliability across more than two sessions (Corsi-Cabrera et 

al., 2007; Kinoshita et al., 1996; Sandman and Patterson, 2000). In order to 

ad-dress this issue, the current study included four-time points to assess the 

reliability of both EEG and ERP measures. 

 

 

In addition to recording intervals, the age of the participants is also known 

to contribute to the variations in ERP reliability (Alperin et al., 2014). Older 

adults show higher reliability of the P3 amplitude at the fronto-central site (Cz) 

while young adults have higher reliability at the centro-parietal area site (Pz) 

(Walhovd and Fjell, 2002). Hämmerer et al. (2013) suggested that age 

differences might be a result of different people's signal-to-noise ratio (SNRs), 

with children and older adults having lower SNRs than other age groups. 

Despite these variations, ERP measures still exhibit moderate to high 

reliability when evaluated with varying recording intervals and when 

participants of different age groups are selected (Hämmerer et al., 2013; 

Walhovd and Fjell, 2002). Therefore, age was used as a covariate throughout 

all our analyses.  
Besides the signal itself, methodological differences in the statistical 

analysis have also led to discrepancies in test-retest reliability in EEG/ ERP 

studies. Different statistical methods have been adopted by studies that 

investigated the correlations between different recording sessions, and the 

test-retest reliability within sessions, such as ICC (Gudmundsson et al., 2007), 

Pearson's r (Walhovd and Fjell, 2002) and 

 

 
Spearman-Brown-corrected coefficients (Cassidy et al., 2012; Hämmerer et al., 

2013; Walhovd and Fjell, 2002). Furthermore, there exist various types of 

Intra-class correlation coefficients (ICC) (Mcgraw and Wong, 1996) and 

previous studies have investigated the test-retest reliability by using different 

ICC measures. For instance, researchers have used a one-way random model 

of ICC (Gudmundsson et al., 2007), a two-way mixed model with absolute 

agreement (Brunner et al., 2013; Hämmerer et al., 2013) and a two-way 

mixed model with consistency (Rentzsch et al., 2008). When assessing EEG 

reliability between ses-sions, we define reliability as having both accuracy (i.e. 

no systematic bias) and precision (i.e. small variance caused by subject 

variability). We will therefore favor the ICC for absolute agreement over 

correlation coefficients or ICC for consistency, since the latter two only 

measure precision and will overestimate the reliability in presence of 

systematic biases. 

 

Since the present study aims at assessing the reliability of EEG/ERP 

parameters, it can serve as a reference for investigating intervention effects. 

Therefore, we included spontaneous EEG, auditory steady state response, 

auditory oddball and hybrid flanker Go/Nogo tasks which are common 

measures in human cognition and executive function. In the present study, we 

incorporated the baseline data from four different sessions of an intervention 

study into one model. The carry-over drug effect from the previous session 

was evaluated through blood tests. The interventions included two different 

dosing levels of vortioxetine, one dosing level of escitalopram and placebo. 

The reliability of baseline data across different doses and types of 

antidepressants was evaluated through a linear mixed model with unstructured 

covariance matrix and was quantified by absolute agreement ICC. We 

hypothesized that: 1. The ICC of EEG and ERP measures will show at least 

moderate test-retest reliability across four recording intervals. 2. The power 

spectrum of continuous EEG will exhibit higher test-retest reliability than 

peak-picking ERP measures. 3. Amplitude measures will have higher test-

retest reliability compared to peak latency measures. 
 

 

2. Method 
 

The study was conducted at the clinical site of Biotrial, Rennes, France. 

The research protocol was approved by the local ethics com-mittee (reference 

No. 15835A). 
 

2.1. Participants 
 

Participants were recruited in this study through advertisements and were 

screened by a trained investigator. To minimize the varia-bility, women were 

excluded to eliminate the menstrual cycle as a covariate. Thirty-two healthy 

male participants were enrolled in the study and were compensated for 

participation. Enrolled participants were aged 22 to 45 years (mean age 33.1 ± 

6.8), their body mass index (BMI) ranged from 19.5 to 27.9 kg/m2 (mean 

BMI 23.9 kg/m2 ± 2.24), 94% of participants were Caucasian and 6% were 

African American. Exclusion criteria included use of psychoactive medication, 

drug or alcohol abuse, severe drug allergy or hypersensitivity and history of 

any medical, psychiatric, and neurological (such as immunological, cardi-

ovascular, respiratory, metabolic neurological, or psychiatric) disease. 

Informed consent was obtained from all the participants before the study. All 

participants conducted the experiment except for one parti-cipant who has 

missing baseline data for three tasks (auditory steady state response (ASSR), 

auditory oddball and hybrid flanker task) in the 3rd session. All the collected 

data were included and analyzed. 
 

 

2.2. Experimental protocol 
 

This was an interventional, randomized, double-blind, placebo-controlled 

and four-way crossover study. The four included intervention regimens were: 

10 mg vortioxetine (A), 20 mg vortioxetine (B), 15 mg escitalopram (C) and 

Placebo (D). Each participant was 
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randomly allocated into one sequence group (ABDC, BCAD, CDBA or 

DACB) with 8 participants in each group and was investigated under all 

intervention regimens separated by a washout period (20–22 days1, median of 

all between sessions were 21 days) (Fig. 1). Bioanalysis was conducted before 

the administration of the next intervention to assess the leftover effects from 

the previous intervention. Within each session, an EEG battery was recorded 

on Day −1 (pre-intervention), Day 1 (the 1st day after intervention) and Day 3 

(the 3rd day after intervention). The EEG battery included continuous EEG 

with resting and with vigi-lance-controlled, ASSR, auditory oddball and 

hybrid flanker tasks. Since the main purpose of this study was to assess the 

test-retest reliability, only the EEG recording of the four pre-interventions 

was considered in the subsequent analysis. 

 

 
2.3. EEG battery 
 

A previous study of antidepressants on rodents has shown a dis-sociation 

marker on different treatments, especially on the γ band (Leiser et al., 2014). 

Moreover, ERP components like P300 and ERN provide physiological 

measures associated with attentional engagement (Olbrich and Arns, 2013) 

and early error processing (Olvet and Hajcak, 2009a). The initiative of this 

study is whether the similar findings could be replicated in humans, as well as 

how antidepressants would affect human cognition and executive function. 

Therefore, we included spontaneous EEG, auditory steady state response, 

auditory oddball and hybrid flanker Go/Nogo tasks. 

 

 

2.3.1. Continuous EEG  
Continuous EEG data were acquired under two conditions: resting and 

vigilance-controlled. Participants were instructed to relax, keep their eyes 

closed and stay awake in both conditions. They were in-structed to keep 

pressing two buttons using their thumbs of each hand under the vigilance-

controlled condition. A sound would play if the participant let go of the 

button. Each condition was recorded at least 3 min. 
 

 

2.3.2. Auditory steady state response (ASSR)  
Participants were presented with a 40 Hz impulse trains sound at 89 dB 

binaurally through a headset (Sennheiser HD 25-1 II pro) (McFadden et al., 

2014; Van Deursen et al., 2011). Each train was composed of 20 biphasic 1 

ms clicks, and each click was followed by silences lasting 24 ms. There was a 

silent period of 700 ms after each train. These trains were repeated for 5 min. 

 
 
2.3.3. Auditory oddball  

The auditory oddball paradigm consisted of two acoustic stimuli with 

different frequencies. Participants were presented with a series of standard 

tones (500 Hz) and deviant tones (2000 Hz) binaurally through a headset 

(Sennheiser HD 25-1 II pro). They were asked to count the deviant sounds. 

To make sure participants performed the task, the presentations of deviant and 

standard tones were different in sessions. Each session consisted of on average 

of 35 deviants (rando-mized between 30 and 40) and 198 standards 

(randomized between 170 and 226). Deviant tones made up 15% of the 

presentations. The sound level for each tone was 85 dB, with duration of 100 

ms and inter-stimulus-interval (ISI) of on average 1550 ms (randomized 

between 1200 and 1900 ms). The test lasted approximately 7 min. 
 
 
2.3.4. Hybrid flanker go/Nogo  

Participants performed a hybrid flanker Go/Nogo paradigm (Ruchsow et 

al., 2006, 2005) with a monitor approximately 100 cm  

 
1 There was one outlier (91 days) in the last washout period due to recording 

cancellation. This recording was rescheduled after all participants were re-corded.
 

 

 
from them. Stimuli consisted of one of the following letter strings (BBBBB, 

DDDDD, VVVVV, UUUUU, BBDBB, DDBDD, UUVUU, or VVUVV) and 

were presented on a computer screen for 300 ms in ran-domized order. 

Participants were required to focus on the center letter and to press a button 

whether it was a B or a U (Go condition), and to withhold a button press upon 

appearance of a D or V (NoGo condition). Each condition consisted of 420 

trials. There were 840 trials overall. Strings with congruent letters made up 

40% of presentations, while strings with different letters were shown in 60% 

of all trials. Each trial was followed by 750 ms for stimulus onset asynchrony 

(SOA) and 500 ms for feedback in response to the participants' performance: 

‘true’ (i.e. correct and in time), ‘faster’ (i.e. correct but out of time) or ‘false’. 

The deadline for response time was 300 ms after stimulus onset. The ISI was 

800 ms (randomized between 600 and 1000 ms). Test duration was 

approximately 45 min. 
 
 
2.4. Electrophysiological recording 
 

All participants were seated on a comfortable armchair in a quiet room. 

During data acquisition, participants were instructed to keep their eyes closed 

during continuous EEG, auditory oddball, and ASSR recordings. Participants 

conducted hybrid flanker task with open eyes and were told to refrain from 

eyes blinking and movement. EEG was recorded from 28 scalp sites using a 

10–20 electrode system, with a sample rate of 400 Hz (Comet EEG system, 

Grass Technologies, West Warwick, RI, USA). AFz served as the ground and 

POz served as the reference electrode. In order to remove ocular and muscle 

artifacts electrooculography (EOG) and electromyogram (EMG) were 

recorded at bipolar channels. Impedances across all electrodes were 

maintained at < 5 kΩ. 

 
2.5. Preprocessing of all data 
 

Eye-blink and other ocular corrections were conducted for all the 

collected data by the ocular artifact reduction option of NeuroScan 4.1 

software. It computes a linear regression of covariance between EEG and 

EOG, and then performs a point-by-point proportional subtraction of the 

blinks (Semlitsch et al., 1986). The data were further processed in Matlab 

2012a (The Matworks, Inc., Natick, MA, USA). 

 
2.5.1. Data preprocessing for spectral analysis  

A zero-phase digital IIR Butterworth bandpass filter was applied to all 

data. The cut-off frequencies of the filter were 1 and 80 Hz, with an order of 2. 

In addition, a 50 Hz notch filter with the order of 6 was applied. All data 

(including continuous EEG, ASSR, auditory oddball and hybrid flanker tasks) 

were re-referenced to the average electrode for later time-frequency analysis. 

Continuous EEG was cleaned by cut-ting sections of noisy EEG from the 

signal by manual inspection. 
 
2.5.2. Data preprocessing for ERP analysis  

A zero-phase digital IIR Butterworth bandpass filter was applied to 

auditory oddball and hybrid flanker tasks. The cut-off frequencies of the filter 

were 0.1 and 30 Hz, with an order of 2. ERP data were re-refer-enced to the 

averages of linked mastoid electrodes (Segalowitz et al., 2010; Weinberg and 

Hajcak, 2011; Williams et al., 2005). 

 

2.6. Data analysis 
 

2.6.1. Time-frequency analysis of all data  
Since EEG data have non-stationary characteristic, all data were analyzed 

using a wavelet transform as this has a better time-frequency resolution than 

the more common Fourier transform (Akin, 2002). The continuous wavelet 

transform was applied using the complex Morlet wavelet as a mother wavelet 

function with a bandwidth of 10 Hz and a center frequency of 1 Hz. The 

scales for the mother wavelet were chosen to match frequencies ranging from 

1 to 80 Hz with a 0.5 Hz 
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Fig. 1. Overall study design. Three interventions (A, B, C) and one 

placebo (D) were included in the study. Each participant was 

randomly allocated to one session sequence including ABDC, BCAD, 

CDBA and DACB. There were washout periods (median intervals 

were 21 days) between two sessions, and pharmacokinetic 

assessments were conducted to assess the carry-over drug effect from 

the previous intervention. Three EEG recordings were conducted 

within each session, in-cluding Day −1, Day 1 and Day 3. In this 

study, only the data from Day −1 was analyzed.  
 
 
 
 
 
 
 
between-scale frequency interval. In the current study we worked on absolute 

power only, thus, the absolute values of the obtained wavelet coefficients were 

used for the following analysis: First, the wavelet coefficients were divided 

into the following standardized bands: δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz), 

β (12–30 Hz), γ1 (30–45 Hz) and γ2 (45–80 Hz). Then, the γ band was 

divided into two bands to deal with artifacts from muscle activity. Next, the 

wavelet coefficients were averaged over time and summed within each 

frequency band.  
We applied different approaches for the continuous EEG and all the other 

tasks. The wavelet transform was applied on the noise-free con-tinuous EEG 

data without segmentation, including resting state and vigilance-controlled. 

All other tasks were segmented prior to time-fre-quency analysis and then 

evoked power was calculated for each task. ASSR and auditory oddball were 

segmented into stimulus-locked epochs of 500 ms according to the onset of 

the stimulus. For the audi-tory oddball task, evoked power was calculated for 

standards and de-viants separately. The hybrid flanker task was segmented 

from 0 to 400 ms according to the onset of error response. 
 

The spectral analysis focused on three midline sites (Fz, Cz, Pz), therefore, 

the values represent the absolute values contained in each frequency band at 

these channels. Data were log-transformed prior to statistical analysis. 

 
2.6.2. Grand average analysis of ERP data  

In the auditory oddball task, EEG data were segmented into sti-mulus-

locked epochs of 1000 ms (including a 200 ms pre-stimulus baseline) 

according to the onset of the sounds. Averaging was per-formed for standards 

and deviants separately. Epochs were rejected if the voltage in EOG channels, 

Fp1, Fp2 exceeded ± 75 μV. Based on prior studies investigating auditory 

oddball key components (Kemp et al., 2010; Poyraz et al., 2017), both peak 

latency and amplitude (baseline to peak) were determined on midline 

channels (Fz, Cz, Pz). The selected components and the corresponding 

latency windows for peak identification included: standard: N100 (80–140 

ms), P200 (140–270 ms); deviant: N100 (80–140 ms) and P300 (270–550 

ms). All epochs were manually inspected for other artifacts. A similar 

approach was applied to the hybrid flanker task. The main interest of the 

hybrid flanker task was the false positive response (Ruchsow et al., 2006, 

2005), thus only responses of error commission were reported. EEG data were 

then segmented into response-locked epochs of 600 ms (in-cluding 200 ms 

pre-response baseline) according to the onset of error response. ERN (0–250) 

was analyzed at sites in the fronto-central area (Fz, Cz) and Pe (100–350) was 

analyzed at sites in the centro-parietal area (Cz, Pz) (Falkenstein et al., 2000). 

The number of accepted epochs is shown in Table 1. 

 

 

 

2.7. Blood sampling 
 

The blood samples (2 mL for each regimen) were analyzed for the plasma 

concentrations of vortioxetine and escitalopram. Plasma con-centrations were 

determined by using protein precipitation followed by 

 
 

 

 

 

 

 

liquid chromatography with tandem mass spectrometric detection. The 

purpose of these assessments was to ensure that previous intervention was 

completely washed out so that it would not interfere with the current 

intervention administration. 

 

2.8. Statistics 
 

The statistics were divided into two parts and performed in SPSS version 

24 (IBM Corp., Armonk, NY). First, all EEG and ERP measures were 

analyzed with a linear mixed model (restricted maximum like-lihood 

estimation) using an unstructured covariance matrix with as-signed sequence 

(ABDC, BCAD, CDBA or DACB) and pre-intervention recordings of each 

session (BL1, BL2, BL3, BL4) as fixed factors. This was done in order to 

investigate if there was an effect of session or assigned sequence on our 

measurements. Participant served as a random variable to account for the 

correlation between measurements from the same patient. An unstructured 

covariance matrix was em-ployed to make minimal assumption on the 

covariance structure - meaning we relax the assumption of homogeneity of 

variance by modeling a different variance at each session and allow the 

correlation to vary between pairs of sessions. The structure of the covariance 

matrix used in the mixed models was decided upon inspection of the model fit. 

Using likelihood ratio tests, we found a significantly worse fit for the 

compound symmetry structure (i.e. assuming constant variance over time and 

constant correlation between any two timepoints) compared to a compound 

symmetry structure for some of the power measures of resting EEG and some 

of the ERP measures of flanker hybrid task. Therefore, an unstructured 

covariance matrix was employed. In all mixed models, age was included as 

covariate. Main effects of session and sequence were tested using F-tests. In 

post hoc analyses, regression coefficients of the different levels of the main 

effects were compared using Wald tests with Tukey contrasts. This was 

performed using the module EM Means for Linear Mixed Model in SPSS. 

Neither the p-values from the F-tests nor the post hoc analyses were adjusted 

for multiple comparisons in order to not reduce power. In this fashion we are 

maximizing our chance to detect any session or sequence effect despite 

detecting possible false positives. Second we assessed the reliability of our 

measurement using the intra-class correlation (ICC) with absolute agreement 

(Brunner et al., 2013; Hämmerer et al., 2013). Single mea-sure ICC (A, 1) 

was calculated by a two-way mixed random model (Mcgraw and Wong, 

1996), where participant served as random vari-able and session served as 

fixed variable. ICC of adjacent time points, BL1 & BL2, BL2 & BL3 and BL3 

& BL4 are reported. In accordance with the classification of ICC levels in a 

previous study (Rentzsch et al., 2008), ICC < 0.39 would be considered poor, 

0.4–0.59 fair, 0.6–0.75 good and > 0.75 would be considered excellent. 

Overall, time var-iances are reported in the supplement and were computed 

by the structure of compound symmetry. To provide a synthetic measure of 

the ICC over time, we computed “average ICCs” using a mixed model with a 

compound symmetry covariance matrix instead of an unstructured covariance 

matrix. This enables us to provide a graphical representation 
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Table 1  
The number of accepted epochs for different tasks.  
 

Task Condition BL1 BL2 BL3 BL4 p values  
        

Auditory oddball Standard 180 ± 23(117–212)
a 169 ± 37(101–227) 167 ± 27(97–215) 174 ± 34(80–227) F (3,92) = 1.884, p = .138 

 Deviant 31 ± 5(22–38) 30 ± 7(16–40) 29 ± 6(12–38) 30 ± 7(15–40) F (3,92) = 1.270, p = .289 
Hybrid Flanker Error 85 ± 35(28–180) 70 ± 28(8–133) 67 ± 36(8–183) 72 ± 31(3–141) F (3,92) = 3.981, p = .01  

 
Notes. 

a
 The minimum and maximum of epochs are provided in the brackets. The mean and standard deviation are reported. 

 
of the ICC as a function of the percentage of accepted trials of across time 

(Fig. 8). 

 
3. Results 
 

Blood tests were performed to assess the carry-over drug effect of 

previous interventions. The blood concentration of the previous treat-ment, 

Cmax for all participants across sessions was below 5%, which was 

considered as complete washout. 
 
3.1. Behavioral results 
 

In the hybrid flanker Nogo trials, participants demonstrated a mean false 

positive alarm rate of 21% (SD: 7.8) for BL1, 17% ( ± 7.3) for BL2, 16% ( ± 

9.1) for BL3 and 18% ( ± 7.7) for BL4. A linear mixed model revealed that 

there were no significant effects for session and assigned sequence in error 

rate (p values > .05). Considering the mean reaction time, participants 

demonstrated a mean false positive reaction time of 283 ms ( ± 18) for BL1, 

282 ms ( ± 22) for BL2, 276 ms ( ± 17) for BL3 and 274 ms ( ± 22) for BL4. 

There were no significant effects of session and assigned sequence in Nogo 

reaction time (p values > .05). 
 
3.2. Absolute power of resting EEG 
 

Since there was no segmentation for continuous EEG, spectra were used 

for presentation instead of time-frequency plots (Fig. 2). There were no 

significant effects of session and assigned sequence in resting condition for all 

frequency bands (p values > .05). In the vigilance-  

 
 
controlled task, γ1 at the central site exhibited a significant main effect of 

session (F (3, 31) = 3.41, p = .029). Post hoc analyses revealed that absolute 

γ1 power at the first recording session BL1 was larger than the last session 

BL4 (17.83 vs 16.39 μV, p = .006). No other significant effect was found. 
 
 
3.3. Evoked power of ASSR, auditory oddball and hybrid flanker task 
 

Fig. 3 shows the absolute evoked power for ASSR, auditory oddball and 

hybrid flanker tasks for all four recording sessions. Compared to the absolute 

power of continuous EEG, evoked power demonstrated more variations 

between sessions. Specifically, the absolute evoked power at the first 

recording (BL1) contributed the most to the significance.  
For the ASSR task, no sequence effect was found for all frequency bands. 

Significant main effects of session were found for δ and γ1 at the frontal site 

(F (3, 31) = 3.919, p = .018; F (3, 31) = 3.567, p = .025, Fig. 3a). Post hoc 

analyses revealed that a smaller absolute δ power was observed at BL1 

compared to BL3 and BL4 (1.35 vs. 1.51 μV, p = .02; 1.35 vs. 1.58 μV, p 

= .004), and larger γ1 was observed at BL1 com-pared to BL3 and BL4 (1.91 

vs. 1.79 μV, p = .02; 1.91 vs. 1.84 μV, p = .03). Similarly, δ at the parietal 

site indicated a significant session effect (F (3, 31) = 3.179, p = .038), showing 

that the absolute δ power at BL1 was smaller than BL4 (0.61 vs. 0.83 μV, p 

= .014). Moreover, θ and α at the central site exhibited significant session 

effects (F (3,  
31) = 4.352, p = .011; F (3, 31) = 3.409, p = .03). The absolute θ power of 

BL1 was the smallest compared to other recording sessions (p values < .05) 

and the absolute α of BL1 and BL2 were smaller than that of BL4 (1.13 vs. 

1.30 μV, p = .03; 1.08 vs. 1.30 μV, p = .013). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Spectral results for continuous EEG including conditions of resting state and vigilance-controlled. Three midline electrodes (Fz, Cz and Pz) are shown for each condition. Four 

recording sessions (BL1, BL2, BL3 and BL4) are shown in different colors. 
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Fig. 3. Time-frequency results for ASSR, auditory oddball and hybrid flanker tasks. Only results at electrode Fz are shown here since most of the significant results were found on this 

electrode. Four recording sessions (BL1, BL2, BL3 and BL4) are shown in columns. Log-scale is shown for the frequency range. 

 
There was no significant effect of session for β and γ2 bands (p va-lues > .05). 

 
For the standard tones in the auditory oddball task, significant session 

effects of the frontal and the parietal sites were observed in the δ band (F (3, 

31) = 5.651, p = .003; F (3, 31) = 3.844, p = .02; Fig. 3b). Post hoc analyses 

revealed that the absolute frontal δ power of BL1 was the smallest (p values 

< .05), while absolute parietal δ power was the largest among all recording 

sessions (p values < .05). No other sig-nificant effect was found. For the 

deviant tones in the auditory oddball task, absolute frontal δ power showed a 

significant session effect (F (3, 31) = 3.111, p = .04), indicating that the 

absolute frontal δ of BL2 was larger than BL3 and BL4 (2.54 vs. 2.37 μV, p 

= .02; 2.54 vs. 2.34 μV, p = .011). Notably, absolute θ power of BL1 was 

significantly smaller than BL2 (2.54 vs. 2.71 μV, p = .02; 2.13 vs. 2.32 μV, p 

= .005), in-dicated by a significant main session effect at frontal and parietal 

sites (F (3, 31) = 3.327, p = .032; F (3, 31) = 3.185, p = .038). Moreover, 

absolute frontal θ power of BL1 was smaller than BL4 (2.54 vs. 2.73 μV, p 

= .02). No sequence effect was found (p values < .05). 

 
There were no session effects in the bands of δ, α and γ1 for the error 

response of the hybrid flanker task. A significant session effect was observed 

for the absolute θ power at the central site (F (3, 31) = 3.52, p = .027), due to 

smaller absolute θ during the first two recording sessions than BL3 (Fig. 3c). 

Significant main effects of session were found for β and γ2 at fronto-central 

sites. Post hoc analyses indicated that absolute frontal β and γ2 powers of 

BL1 were the smallest (F (3,  
31) = 3.679, p = .023; F (3, 31) = 3.219, p = .036) among other re-cording 

sessions. Absolute central β, γ1 and γ2 powers of BL1 were  
smaller than BL3 (F (3, 31) = 3.297, p = .033; F (3, 31) = 4.804, p = .007; F 

(3, 31) = 3.640, p = .023). Moreover, absolute γ2 of BL1 at the central site 

was smaller than BL4. Sequence effects were observed in γ2 at the frontal site 

(F (3, 24) = 4.381, p = .014), due to the greatest power observed in the 

sequence of ABDC among others. 

 
 
3.4. Amplitude and latency analysis of auditory oddball and hybrid flanker 

tasks 
 

Table 1 shows the number of accepted epochs for both auditory oddball 

and hybrid flanker tasks. The results of a linear mixed model indicated that 

there was a significant session effect (F (3,92) = 3.981, p = .01) for the number 

of accepted epochs in the hybrid flanker task. BL1 demonstrated a significant 

higher number in accepted epochs than BL2 (p = .043), and BL3 (p = .014). 

No session effect was observed for the auditory oddball task (p values > .05). 

 
Fig. 4 shows the mean ERP waveform for auditory oddball and hybrid 

flanker tasks for all four recording sessions. For the standard ERPs in the 

auditory oddball task, fronto-central N100 amplitude ex-hibited a significant 

session effect (F (3, 31) = 5.21, p = .005; F (3, 

31) = 6.93, p = .001, Fig. 4). BL1 and BL2 showed larger fronto-central N100 

amplitude than BL3 and BL4 (p values < .05). No session effect was found for 

fronto-central N100 latency. However, parietal N100  
latency indicated a significant session effect (F (3, 31) = 3.36, p = .034), 

showing that BL1 had longer latency than all other recording sessions (p 

values ≤ .052). There was no session effect on the P200 amplitude. No 

assigned sequence effect was found for standard ERPs. For the deviant ERPs 

in the auditory oddball task, there were no sig-nificant effects of session and 

assigned sequence on the N100 ampli-tude. The central N100 latency was 

shortest for the last recording (BL4,  
p values < .05), as suggested by a significant session effect (F (3, 31) = 3.26, 

p = .034). The fronto-central P300 amplitude seemed not to be affected by 

session or assigned sequence (Fig. 4). However, a significant session effect 

was also found for the parietal P300 latency (F (3, 31) = 4.13, p = .014), 

showing that a shorter P300 latency was observed at BL1 compared to BL4 

(310 vs. 325 ms, p = .009).  
For the error ERPs in the hybrid flanker task, there were no sig-nificant 

effects of session and assigned sequence for ERN and Pe 
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Fig. 4. The grand-averaged ERP waveforms for the auditory oddball (epoched by the stimuli) and hybrid flanker task (epoched by the error response). Three midline electrodes (Fz, Cz 

and Pz) are shown for each task/component. Four recording sessions (BL1, BL2, BL3 and BL4) are shown in different colors. 

 
amplitudes (see Fig. 4). However, session effects were observed for the 

latency measures. The fronto-central ERN latency exhibited a sig-nificant 

session effect (F (3, 31) = 3.78, p = .02; F (3, 31) = 6.91, p = .001), showing 

that a longer ERN latency was observed at BL1 than at BL3 and BL4 (p 

values < .05). The centro-parietal Pe latency was longer at BL1 and BL2 than 

BL3 and BL4 (p values < .05), as indicated by a significant session effect (F (3, 

31) = 29.34, p < .001; F (3, 31) = 22.66, p < .001). 

 

 
3.5. Test-retest reliability 
 
3.5.1. Absolute power of resting EEG  

Between session ICCs for continuous EEG (both resting state and 

vigilance-controlled) are presented in Fig. 5. The test-retest reliabilities were 

similar in both conditions. The ICCs of adjacent sessions showed excellent 

test-retest reliability (0.84–0.97) in the frequency bands of θ,  
α and β. Midline δ and γ1 bands were less robust but still indicated good to 

excellent levels of reliability (0.62–0.87). ICCs for midline γ2 ex-hibited the 

least reliability among all other bands (0.30–0.66). Across time, ICC showed 

similar results to adjacent time points. Midline θ, α and β had excellent 

reliability (0.86–0.93) while δ and γ1 bands showed good to excellent 

reliability (0.66–0.82). Compared to adjacent time points, γ2 ICC across time 

performed worse with poor to fair levels of reliability (0.37–0.52). 

 
 
3.5.2. Evoked power of ASSR, auditory oddball and hybrid flanker task 

Between session ICCs for evoked power of ASSR, auditory oddball  
and hybrid flanker tasks are presented in Fig. 6. Across time ICC showed 

similar results to adjacent time points.  
For the ASSR task, midline γ1 –which contains the stimulation fre-

quency- exhibited good to excellent reliability for both adjacent ses-sions and 

across time (0.66–0.86), except for the fair ICC measured between the last 

two sessions at the frontal site (0.57). The ICCs of δ, β and γ1 were less 

robust but still indicative of fair to good levels of re-liability (0.44–0.76). 

Midline θ exhibited larger variations in different 

 
 
recording sessions, where the reliability varied from poor to excellent (0.37–

0.83). The ICCs of the α band demonstrated poor to fair levels of reliability in 

the ASSR task (0.19–0.56).  
For the standard tones of the auditory oddball task, midline β and γ1 

revealed fair to excellent levels of reliability for both adjacent sessions and 

across time (0.44–0.85). The ICCs of the δ, θ and α bands exhibited larger 

variation between sessions compared to the β and γ1 bands, in the range of 

poor to excellent (0.29–0.84). Compared to other fre-quency bands, midline 

γ2 of standard tones showed less robust relia-bility with poor to good levels 

of ICC (0.36–0.62). In general, deviant tones were less robust compared to 

standard tones. The ICCs of δ were in the range of good to excellent (0.63–

0.83). Midline θ had poor to excellent reliability (0.34–0.82) while the ICCs 

of other bands were in the range of poor to good (0.08–0.75). 
 

For the error response of the hybrid flanker task, midline θ tended to 

exhibit the best reliability among other bands for both adjacent sessions and 

across time (0.50–0.85). The ICCs of α were fair to good (0.47–73) while the 

ICCs of δ showed more variability, in the range of poor to excellent (0.24–

0.80). Midline β, γ1 and γ2 bands demonstrated similar reliability, in the 

range of poor to good levels of reliability (0.25–74). 

 
3.5.3. Amplitude and latency analysis of ERP task  

Between session ICCs for peak amplitude and latency measures of the 

auditory oddball and hybrid flanker tasks are presented in Fig. 7. Generally, 

amplitude and latency analysis of ERP showed lower relia-bility compared to 

the power spectrum analysis of ERP data. Further-more, latency measures 

were less stable than amplitude measures.  
For standard ERPs in the auditory oddball task, the fronto-central N100 

amplitude showed good to excellent reliability for adjacent ses-sions and 

across time (ICC > 0.70), and the parietal N100 amplitude demonstrated poor 

to fair levels of reliability (0.39–0.53). The P200 amplitude exhibited similar 

reliability, with good to excellent levels of reliability at fronto-central sites 

(0.65–0.83) and less stable perfor-mance at parietal site (0.49–0.68). Latency 

measures exhibited more variations from session to session. The ICCs of the 

N100 latency were in 
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Fig. 5. Intra-class correlation coefficient (ICC) for continuous EEG across four sessions. ICCs of adjacent time and across four-time points are reported. Test-retest reliability is 

estimated by the single measure ICC (A, 1). The mean and confident intervals for ICCs are shown in the figure. 

 
the range of fair to excellent (0.43–0.89), except for the ICC of first two 

sessions, which showed only poor reliability (0.28). The ICCs of the 

P200 latency were in the range of poor and fair (−0.48–0.49). Compared 

to standard tones, the fronto-central N100 amplitude of 

 
 
deviant tones exhibited lower reliability, with the ICC range of poor to 

fair (0.18–0.45). The parietal N100 amplitude showed poor reliability 

(−0.05–0.19). The midline P300 amplitude yielded fair to excellent 

reliability for adjacent sessions and across time (0.55–0.80). Compared 
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Fig. 6. Intra-class correlation coefficient (ICC) for ASSR, auditory oddball and hybrid flanker tasks across four sessions. ICCs of adjacent time and across four-time points are reported. 

Test-retest reliability is estimated by the single measure ICC (A, 1). The mean and confident intervals for ICCs are shown in the figure. 

 
to the standard ERPs, the latency measures for deviant ERPs demon-strated 

less variations between sessions but were still indicative of poor to good 

levels of reliability (N100: −0.10–0.57; P300: 0.19–0.63).  
For the error ERPs in the hybrid flanker task, the fronto-central ERN 

amplitude demonstrated poor to good levels of reliability for adjacent sessions 

(0.12–0.61) and poor reliability across time (0.32–0.38). The centro-parietal 

Pe tented to exhibited higher reliability compared to ERN, with the ICC 

ranging of good to excellent for both adjacent time points and across time 

(0.60–0.82). Latency measures showed less re-liability compared to 

amplitude measures. The ICCs of ERN latency were poor (0.12–0.35) while 

Pe latencies were poor to good (0.19–0.71). 
 

 
3.5.4. Exploratory analysis: test-retest reliability with increasing percentage of 

accepted trials  
Across time ICCs for the auditory oddball and hybrid flanker tasks for an 

increasing percentage of accepted trials are presented in Fig. 8 (see 

Supplementary materials for adjacent time points). Four percen-tages were 

assessed with 25% as an increment: 25%, 50%, 75% and 100%. Percentages 

were calculated relative to the total amount of ac-cepted trials individually. 

Then the corresponding number of trials would be successively selected from 

the total amount of accepted trials, 

 
 
i.e. the first 25% (or 50% and 75%) of the total accepted trials. The number of 

accepted epochs for different percentages is shown in Table 2. Mean 

amplitude, which was calculated using the same window as peak amplitude, 

was included here for comparison to peak ampli-tude. 

 
As expected, reliability increased with increasing percentage of ac-cepted 

trials. Peak amplitude demonstrated comparable results with mean amplitude 

for all components. Latency measures were more susceptible to changes of 

percentage compared to peak amplitude and mean amplitude measures. 
 
For the ERPs in the auditory oddball task, the ICCs increased with increasing 

percentage of accepted trials. Hence, it could be possible that increasing the 

number of accepted trials could increase the test-retest reliability. The grand 

average (100%) exhibited the highest reliability for almost all components, 

except for the N1 latency evoked by deviant tones, where the ICCs for grand 

average were lower than that of the first 75% of accepted trials.  
For the error ERPs in the hybrid flanker task, the results for the ERN and Pe 

measures are similar. They were less affected by the increasing percentage of 

accepted trials. The ICCs increased slightly with in-creasing percentage of 

accepted trials up to the first 50%, but then remained at the same level of 

reliability as the grand average. 

 



 

C.-T. Ip et al. International Journal of Psychophysiology 134 (2018) 30–43  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Intra-class correlation coefficient (ICC) for peak amplitude and latency measures of auditory oddball and hybrid flanker tasks across four sessions. ICCs of adjacent time and 

across four-time points are reported. Test-retest reliability is estimated by the single measure ICC (A, 1). The mean and confident intervals for ICCs are shown in the figure. 

 
 
4. Discussion 
 
In this study, we examined the test-retest reliability of an EEG battery over 

four recording intervals. The EEG battery was comprised of continuous EEG 

(resting state and vigilance-controlled), ASSR as well as an auditory oddball 

paradigm and a hybrid flanker task. A linear mixed model with unstructured 

covariance matrix was used to identify any significant effect of recording 

session or the assigned intervention se-quence. The test-retest reliability was 

quantified by an absolute agreement type of ICC. For healthy participants, the 

results demon-strated that the EEG battery was found to be reliable over four 

sessions. The absolute power of continuous EEG showed excellent reliability 

in θ,  
α and β (ICC > 0.84). Evoked power for ERP tasks demonstrated itself to be 

less stable compared to the absolute power of continuous EEG. The absolute 

evoked power of ASSR showed fair reliability in δ, β, γ1 and γ2 bands. For 

the auditory oddball task, the β band exhibited fair reliability (ICC > 0.51) in 

both standard and deviant conditions. The ICCs of θ in the hybrid flanker task 

were the most stable among all the frequency bands. While the ERP 

components showed lower reliability than the power spectral analysis, they 

still showed good test-retest re-liability at their maximal sites. The P300 

amplitude obtained from the auditory oddball paradigm had consistently fair 

to excellent reliability at the central sites (ICC = 0.55–0.80) as well as the 

amplitude of the midline P2 (ICC = 0.49–0.83). The centro-parietal Pe 

amplitude ob-tained from the hybrid flanker task also exhibited good to 

excellent reliability (ICC = 0.60–0.82). Compared to amplitude measures, 

peak latency measures showed poor to good reliability with greater varia-

bility, thus they are less reliable compared to other measures. A washout 

period and pharmacokinetic assessment were included to avoid a carry-over 

drug effect from the previous intervention. 

 

 

4.1. The absolute power analysis of continuous EEG is highly reliable 
 
The observed excellent test-retest reliability of continuous EEG in the power 

analysis is consistent with previous studies (Corsi-Cabrera et al., 2007; 

Gudmundsson et al., 2007; McEvoy et al., 2000; Williams et al., 2005). In the 

study of Gudmundsson et al. (2007), researchers 

 
 

 

compared different qEEG features such as power spectral parameters, entropy, 

complexity and coherence measures and suggested that power spectral 

analysis exhibits higher reliability than others types of analysis. This was 

confirmed by our results, and indicates that power spectral analysis of 

continuous EEG is reliable over time and is sufficient for clinical use. 
 

 

4.2. The reliability of ERP measures was affected by various factors 
 

Our results showed that ERP measures exhibited more variation and are less 

stable compared to continuous EEG. According to previous results, there are 

many factors that could cause the variability of ERP measures. They include 

the number of averaged trials (Larson et al., 2010) and the scoring methods 

(Brunner et al., 2013). Larson et al. (2010) investigated the influence of the 

number of averaged trials on error-related ERP components, and showed that 

adding trials increases the test-retest reliability for both the amplitude and 

latency measures. This was confirmed by our exploratory analysis. The results 

highlighted that increasing the percentage of accepted trials improved the test-

retest reliability. For the ERPs in the auditory oddball task, the first 75% of 

accepted trials produced a comparable reliability to the grand average. 

Particularly for the latency measures, the increasing trend indicated that an 

increasing number of accepted trials improved the reliability. Except for the 

N1 latency of deviant tones, the ICCs of the grand average had lower 

reliabilities than the corresponding ICCs based on the first 75% of accepted 

trials. This result was mainly due to the high reliability of the first 75% of 

accepted trials at BL1-BL2 (Fig. S1). We surmised that fatigue/impatience 

due to the unfamiliarity of the task might be a possible reason. Participants 

could be tired or lose motivation during the last 25% of the accepted trials. 

Since this phe-nomenon didn't extend to the subsequent sessions, the result 

reiterated the importance of guiding the participants in a proper way so that 

they can be more comfortable with the experiments during the first re-cording 

session. For the error ERPs in the hybrid flanker task, the re-liability of 

different percentages was similar, especially for percentages above the first 

25%. This finding supports previous findings by Olvet and Hajcak (2009b), in 

which they reported that stable ERN and Pe can 
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Fig. 8. Intra-class correlation coefficient (ICC) with increasing percentage of accepted trials of across time for ERP tasks (please refer to the Supplementary materials for adjacent time 

points). Four percentages of accepted epochs are assessed: 25%, 50%, 75% and 100%. Test-retest reliability is estimated by the single measure ICC (A, 1). The mean and confident 

intervals for ICCs are shown in the figure. 
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Table 2  
The number of accepted epochs for different percentages.  
 
Task Percentage Condition BL1 BL2 BL3 BL4 
           

Auditory oddball 25% Standard 44 ± 7(30–53)
a 39 ± 9(25–57) 40 ± 8(24–54) 41 ± 8(20–57) 

  Deviant 8 ± 1(6–10) 7 ± 2(4–10) 7 ± 2(3−10) 7 ± 2(4–10) 
 50% Standard 87 ± 13(59–106) 78 ± 19(51–114) 79 ± 16(49–108) 81 ± 17(40–114) 
  Deviant 15 ± 2(11–19) 14 ± 4(8–20) 14 ± 3(6–19) 14 ± 3(8–20) 
 75% Standard 130 ± 20(88–159) 116 ± 28(76–170) 119 ± 24(73–161) 122 ± 25(60–170) 
  Deviant 23 ± 3(17–29) 21 ± 5(12−30) 21 ± 5(9–29) 21 ± 5(11−30) 
 100% Standard 180 ± 23(117–212) 169 ± 37(101–227) 167 ± 27(97–215) 174 ± 34(80–227) 
  Deviant 31 ± 5(22–38) 30 ± 7(16–40) 29 ± 6(12–38) 30 ± 7(15–40) 
Hybrid Flanker 25% Error 22 ± 9(7–45) 18 ± 7(2–34) 17 ± 9(2–46) 18 ± 8(1–36) 
 50%  43 ± 18(14–90) 35 ± 14(4–67) 34 ± 18(4–92) 36 ± 16(2–71) 
 75%  64 ± 26(21–135) 53 ± 21(6–100) 51 ± 28(6–138) 54 ± 23(3–106) 
 100%  85 ± 35(28–180) 70 ± 28(8–133) 67 ± 36(8–183) 72 ± 31(3–141)  
 
Notes. 

a
 The minimum and maximum of epochs are provided in the brackets. The mean and standard deviation are reported. 

 
be obtained with 6 and 2 error trials, correspondingly. Our data ex-tended the 

results by presenting similar reliability when the number of accepted trials 

was increased. Moreover, we found that the reliability of ERP measures is 

affected by the size of the components. Smaller-sized components such as 

N100 and ERN exhibit lower reliability relative to larger-sized components, 

such as P300 and Pe (Fig. 7). This discrepancy could be caused by the 

difference in SNRs existing in different sizes of ERP components (Luck, 

2005). Increasing the number of averaged trials and a better control of 

artifacts could increase the SNR for ERP com-ponents, thereby leading to a 

higher reliability.  
Furthermore, we found that amplitude measures are more stable than latency 

measures, which is consistent with previous findings (Cassidy et al., 2012). 

The scoring method could play an important role in causing the discrepancies 

between ERP parameters, in which am-plitude seems to be less susceptible to 

different scoring methods (Olvet and Hajcak, 2009a; Weinberg and Hajcak, 

2011) than latency (Brunner et al., 2013). Brunner et al. (2013) compared the 

reliability of con-ventional peak measures and of the fractional area approach 

(FA) for the measures of independent component analysis (ICA). Their results 

suggested that the FA approach leads to an increase in the reliability of 

latency measures between two recording sessions, especially for the late 

components. On the other hand, Olvet and Hajcak (2009a) found si-milar 

reliabilities using both the area and peak measures, which in-dicate that the 

reliability of amplitude measurements is affected by different scoring methods 

to a lesser degree. In the present study, only peak-picking analysis was 

implemented, and thus it was difficult to capture the best method for the 

reliability of latency measures. Further investigation is needed to improve the 

reliability of latency measures in general. 

 

 

 

 

4.3. Statistical methodology 
 

To date, EEG/ERP reliability studies have mainly been conducted over two 

recording sessions, while more than two sessions are involved in most 

pharmacological studies. It is important to evaluate how EEG changes across 

longer periods of time and across multiple sessions. The reason for choosing a 

linear mixed model for the present analysis is that it can evaluate different 

recording sessions through an unstructured covariance matrix, an approach 

which is assumption-free on the cov-ariance matrix, given the fact that we 

cannot be sure whether EEG/ERP parameters decay, increase or remain stable 

between the different re-cordings. This approach is adequate for assessing 

multiple recordings. We used the ICC coefficients to quantify the reliability 

between sub-sequent recording sessions instead of the Pearson correlation 

coefficient since the latter is not a proper measure of reliability (see Chapter 1, 

(Lin et al., 2012)). 

 
 
4.4. Limitations 
 
There are some considerations that need to be taken into account before an 

interpretation and further generalization of our results can be made. First, to 

reduce the variability of our data, we excluded women in our recruited 

population. Even though the effect of menstrual cycle was not the main 

interest in the current study, it could result in lower re-liabilities based on 

previous findings (O'Reilly et al., 2004; Walpurger et al., 2004). Moreover, 

Bazanova et al. (2017) demonstrated how the α amplitude suppression could 

change in different phases of the men-strual cycle, but the effects of different 

phases and the relation between phases and the reliability of EEG (or ERP) 

remain unclear. Hence, the presented results should be carefully interpreted 

since menstrual cycle could influence the test-retest reliability. Although there 

was previous evidence showing that the test-retest reliability is highly 

comparable for both genders (Tenke et al., 2018), future studies must address 

whether test-retest reliability changes across genders, e.g. with the menstrual 

phases. 

 

In addition, the mixed model showed a significant effect of assigned sequence. 

We believe that this might be caused by the spurious age differences within 

the different sequence groups (F (3, 31) = 4.057,  
p < .05), since unfortunately age was not taken into account when the 

participants were randomized. This could cause low EEG/ERP relia-bility 

since age does have an impact on EEG/ERP (Hämmerer et al., 2013). 

However, we cannot be certain due to the relatively small sample size of the 

present study (eight participants per intervention sequence). 

 

Another related issue is that of the low number of accepted trials of error 

ERPs at BL4 which was observed for one participant (Table 1, the minimum 

is 3). This participant contributed the lowest number of ac-cepted trials (the 

second lowest is 12) in all sessions. This was the case due to low committed 

errors instead of a noisy signal (i.e. non-phy-siological signal). We didn't 

exclude the participant for two main rea-sons: first, this study is a clinical trial 

and thus it is important to report the actual data. Second, in the study of Olvet 

and Hajcak (2009b), they demonstrated that stable error ERPs could be 

measured with a minimum of six error trials, even two trials for the 

component Pe. Olvet and Hajcak (2009a) extended the results by comparing 

the reliability of high versus low number of error trials, and demonstrated 

similar test-retest reliability between groups. Therefore, it could be possible 

that the reported reliability for EPRs is underestimated but we don't believe 

the exclusion of this single participant's data would improve the reliability 

significantly. 

 

Finally, carry-over drug effects might have existed in our dataset even though 

blood tests confirmed that there was a complete washout. This is because 

while during later baseline measurements, blood tests can eliminate the 

presence of previous interventions in the bloodstream (BL2, BL3, BL4), it 

cannot completely rule out the indirect influence a previous treatment had on a 

participant's subsequent test performance. 
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5. Conclusions 
 
In conclusion, we find excellent test-retest reliability for power spectra 

measures of continuous EEG in the frequency bands of θ, α and  
β and an acceptable reliability for the evoked power of ERP tasks. Amplitude 

measures are more consistent across sessions relative to la-tency measures, 

and the amplitudes of P300 and Pe are more reliable than the amplitudes of 

ERN and Pe. Our results support that these EEG/ ERP parameters are reliable 

across three-week intervals and thus are sufficiently reliable for future 

investigations examining pharmacolo-gical effects. 

 

Supplementary data to this article can be found online at https:// 

doi.org/10.1016/j.ijpsycho.2018.09.007. 
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Supplementary 

 

Fig.  S1 Intra-class correlation coefficient (ICC) with increasing percentage of accepted trials of BL1-BL2 for ERP tasks. Four 

percentages of accepted epochs were assessed: 25%, 50%, 75% and 100 %. Test-retest reliability was estimated by single 

measure ICC (A, 1). Mean and confident intervals for ICCs are shown in the figure. 



 

 

Fig.  S2 Intra-class correlation coefficient (ICC) with increasing percentage of accepted trials of BL1-BL2 for ERP tasks. Four 

percentages of accepted epochs were assessed: 25%, 50%, 75% and 100 %. Test-retest reliability was estimated by single 

measure ICC (A, 1). Mean and confident intervals for ICCs are shown in the figure. 



 

 

Fig.  S3 Intra-class correlation coefficient (ICC) with increasing percentage of accepted trials of BL1-BL2 for ERP tasks. Four 

percentages of accepted epochs were assessed: 25%, 50%, 75% and 100 %. Test-retest reliability was estimated by single 

measure ICC (A, 1). Mean and confident intervals for ICCs are shown in the figure. 
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Abstract: 
 
 

Several electroencephalogram (EEG) biomarkers for prediction of drug response in major depressive 

disorder (MDD) have been proposed, but validations in larger independent datasets are missing. In 

the current study, we investigated the prognostic value of previously suggested EEG biomarkers. We 

gathered data that matched prior studies in terms of EEG methodology, clinical criteria for MDD, and 

statistical approach as closely as possible. The NeuroPharm study is a non-randomized and open label 

prospective clinical trial. One hundred antidepressant free patients with MDD were enrolled in the 

study and 79 (57 female) were included in the per-protocol analysis. The biomarkers candidates for 

cross-validation were derived from prior studies such as iSPOT-D and EMBARC and include frontal 

and occipital alpha power and asymmetry and delta and theta activity at anterior cingulate cortex 

(ACC). The alpha asymmetry, reported in two out of six prior studies, could be partially validated. 

We found that in female patients, larger right than left frontal alpha power prior to drug treatment was 

associated with better clinical outcome 8 weeks later. Moreover, female non-responder had higher 

central left alpha power relative to the right. In contrast to prior reports, we found that lower theta 

activity at ACC was present in remitters and was associated with greater improvement at week 8. We 

provide evidence that in women with MDD, alpha asymmetry seems to be the most promising EEG 

biomarker for prediction of treatment response. 

 

Registration number: NCT02869035. 
 
 

Keywords: qEEG, major depressive disorder, treatment response, pretreatment biomarker 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3 



 

1. Introduction 
 

 

Major depressive disorder (MDD) is a heterogeneous disease with widespread biological causes, 

which explains why not all patients benefit from the same treatment (Spronk et al., 2011). Further, 

there is an often-prolonged time of treatment with trial-and-error regarding the choice of intervention 

(Baskaran et al., 2012). The situation could be remediated if patients were appropriately stratified for 

treatment selection (Olbrich and Arns, 2013), based on, e.g. their neurophysiological 

endophenotypes (Wu et al., 2020; Zhdanov et al., 2020). 

 

Due to its low cost, high temporal resolution, and high accessibility, electroencephalography (EEG) 

shows great promise as a useful biomarker in clinical settings. As summarized in Table 1, several 

quantitative EEG (qEEG) biomarkers have shown potential to predict treatment outcome in MDD. 

Among those markers, alpha (Bruder et al., 2008) power (8–12 Hz rhythmic brain wave) and theta 

(Korb et al., 2009; Pizzagalli et al., 2001) power (4–8 Hz), sometimes in combination with a source 

localization technique (Pascual-Marqui, 1999; Pascual-Marqui et al., 1994), are the most promising 

candidates for clinical usage. 

 

While these results are promising, they still suffer from low effect sizes, small samples, and 

importantly a lack of independent cross-validation in other cohorts. Another challenge is the use of 

different methodology e.g. by means of vigilance states under resting conditions (alert: Korb et al., 

2009; relaxed: Pizzagalli et al., 2018) and heterogeneous treatment response criteria (Widge et al., 

2018). In particular, differences in how treatment responders are defined limit comparisons between 

studies because some patients are considered responders in one study but not in another. Together 

these inconsistencies limit the validity and comparability of the reported findings. 

 

We here aim to validate previously reported biomarkers relating to treatment outcome in MDD in an 

independent dataset (NeuroPharm). We meticulously applied the same criteria as previous studies 

regarding treatment response, biomarker definition, preprocessing/analysis methods and statistical 

approaches. We hypothesize that validation is achievable in our independent prospective study cohort. 
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2. Methods 

 

2.1. Study design 
 

 

NeuroPharm is a non-randomized, open label clinical trial (Figure 1). Details of the study protocol 

are described elsewhere (Köhler-Forsberg et al., 2020) 

 

2.2. Participants and treatment 
 

 

Two-hundred and fifty-nine antidepressant-free, MDD outpatients were screened from the central 

referral site and general practitioners, the Mental Health Services in the Capital Region of Denmark. 

MDD diagnosis was confirmed by a certified psychiatrist and confirmed by a Mini-International 

Neuropsychiatric Interview (Sheehan et al., 1998). Inclusion criteria for patients were: 18–65 years, 

moderate to severe, first or recurrent major depressive episode and a minimum score of 18 on 

Hamilton Depression Rating Scale 17 items (HDRS17). Exclusion criteria: clinically significant 

psychosis, severe somatic co-morbidity, current or previous psychiatric severe co-morbidity, acute 

suicidal ideation and duration > 2 years of the current episode. One-hundred patients who met the 

criteria were allocated to treatment. All participants provided written informed consent prior to 

participation. The study was approval by the National Committee on Health Research Ethics 

(protocol: H-15017713). 

 

Patients were treated with the selective serotonin reuptake inhibitor (SSRI) escitalopram at flexible 

doses of 5–20 mg/day adjusted depending on effects and side effects by trained physicians at each 

visit: week 1, 2, 4, 8 and 12. HDRS6 was extracted from the HDRS17 and used for assessment of 

antidepressant response (Bech et al., 2010, 2006; Østergaard et al., 2016). Definitions of treatment 

response are shown in Figure 1. 

 

Consistent with clinical practice, patients with no response to escitalopram after 4 weeks, defined as 

early non-responders, or with intolerable side effect were offered second line treatment with the 

selective serotonin noradrenalin reuptake inhibitor (SNRI) duloxetine, with a dose ranging of 30–120 

mg/day (n = 15). Medication compliance, side-effects to antidepressant treatment, and depressive 

symptoms were monitored at each visit. 
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A total of 79 patients were included in the per-protocol analyses: Two patients opted out of the study 

and for technical reasons, pretreatment EEG data was missing in five patients. One patient was 

excluded due to spontaneous remission and one patient was excluded due to suicidal ideations. 

Twelve patients dropped out before week 8. Three patients suspected of non-compliance because of 

drug levels below ≤ 5 nM at week 8 were excluded from the post-hoc analysis. 

 

2.3. Electrophysiological recording 
 

 

EEG recording was conducted 2.5 ± 2.4 days (mean ± SD) before treatment was initiated. All patients 

were seated on a comfortable armchair in a quiet room. Resting EEG was recorded with both eyes 

closed and open. Participants were instructed to remain quiet and relaxed, avoid eye-blinks and 

movements and to relax chin muscles during recording. Resting EEG was recorded during four 3-min 

periods with a counterbalanced order of OCOC (O for eyes open, C for eyes closed) or COCO 

between subjects. EEG data were recorded using a 256-channel HydroCel Sensor Net system (EGI, 

Inc., Eugene, OR) at 1000 Hz with 0.1–100 Hz analog filtering, the vertex electrode as reference. 

Impedances were kept below 50 kΩ. The high-density electrode array allowed the resampling of 

montages used by the different studies that we ought to validate. 

 

2.4. Chosen biomarkers for validation 
 

 

Besides the biomarkers showing promise in the meta-analysis, the study of Pizzaglli et al. (Pizzagalli 

et al., 2018) was also included (Table 1) since it is until present day the largest multicenter 

randomized placebo controlled clinical trial (Trivedi et al., 2016) and was published after the meta-

analysis. Theta cordance and antidepressant treatment response index are treatment emergent 

biomarkers (for assessment one week after intervention), and thus were excluded from this analysis. 

Alpha activity derived from current source density was excluded (Tenke et al., 2011) because the 

criteria of acquiring the exact principal components were not reliably described. Since we only 

recorded EEG while patients were relaxed, we excluded studies where patients were kept alert 

(Cook et al., 2009; Iosifescu et al., 2009; Korb et al., 2009). 

 

2.5. Electrophysiological Preprocessing and spectral analyses 

 

6 



 

 
Corrupted channels were interpolated using spline interpolation (Perrin et al., 1989). Resting EEG 

data were re-referenced offline to an average reference. Eye-movement artifacts were corrected using 

independent component analysis in EEGLAB (Delorme and Makeig, 2004). A zero-phase digital IIR 

Butterworth bandpass filter was applied, cut-off frequencies were 0.5 and 70 Hz, with orders of 2. An 

additional 50 Hz notch filter (order of 3) was applied. The data were cut into 1s epochs for visual 

artifact inspection (movement, muscle and electrical artifacts) and were further processed in Matlab 

2017b (The Mathworks, Inc., Natick, MA, USA). 

 

The data were re-epoched into 4s (adjusted when assessing different biomarkers) epochs with 50% 

overlapping for spectral analysis. Average power spectra were computed for O and C conditions 

separately using short-time Fourier transform after tapering with a Hanning window to suppress 

spectral leakage. For each electrode (see Table 1 for the selected electrodes), the resulting absolute 

power spectra were calculated over segmentations and over the following bands: overall alpha (8–13 

Hz for Arns et al., 2016; 7.8–12.5 Hz for Bruder et al., 2008, 2001) and high alpha (10–12.5 Hz for 

Bruder et al., 2001). Logarithms of power values were applied. 

 

2.5.1. eLORETA analysis 
 

 

All resting data with eyes-closed were resampled to 250 Hz, in alignment with previous studies 

(Pizzagalli et al., 2001, 2018; Rentzsch et al., 2014), and further analyzed with exact low-resolution 

electromagnetic tomography (eLORETA) (for technical details refer to Pascual-Marqui, 2007; 

Pascual-Marqui et al., 2011). The eLORETA software computes three-dimensional intracerebral 

source distributions. Cross-spectra for delta (1.5–6 Hz) (Rentzsch et al., 2014), narrow (6.5–8 Hz) 

(Pizzagalli et al., 2001, 2018) and broad theta (4.5–7 Hz) bands (Pizzagalli et al., 2018) were 

computed. The extracted power of current source density was normalized for every subject and every 

band. Logarithms of power were extracted from the following regions of interest (ROI): Rostral 

anterior cingulate cortex (identical 14 voxels from Pizzagalli et al., 2001, 2018) and perigenual and 

anterior dorsal (pg/ad) ACC (identical 22 voxels from Rentzsch et al., 2014) based on previously 

evidence on treatment response (See Figure 2a for the visualization of the Montreal Neurological 

Institute brain atlas (MNI) coordinates). 
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2.6. Statistical analyses 
 

 

The statistics were performed in SPSS version 24 (IBM Corp., Armonk, NY). The statistical models and 

covariates used to carry out the analyses are listed in table 2; they were kept as close as possible to the 

original studies. For treatment response definition, criteria of NeuroPharm (Figure 1) and of the resampled 

studies (Arns et al., 2016; Bruder et al., 2008, 2001; Pizzagalli et al., 2001, 2018; Rentzsch et al., 2014) 

were assessed. To allow for comparison across studies using different rating scales of treatment response, 

scales were transformed whenever possible (Riedel et al., 2010). Otherwise, responders were defined by at 

least 50% improvement of depressive symptoms as assessed by the HDRS17 score at week 8. To 

investigate the value of biomarkers adds to the preexisting drug efficacy, number needed to treat (NNT) 

was reported when a significant effect of treatment responses appeared. 

 

Bonferroni's correction was used to adjust for multiple comparisons in post-hoc analyses. Degrees of 

freedom were corrected by Greenhouse-Geisser correction when necessary. One-sided p values were 

chosen, for the sake of validation. Group differences in sex, age, education, pretreatment generalized 

anxiety disorder-10 (GAD-10) (Bech et al., 2005) and pretreatment HDRS scores were tested by 

simple t statistic or using the χ2 statistic (sex). Two-sided p values were chosen when testing the 

demographical features. 

 

3. Results 
 

 

Groups did not differ in age, sex, education, pretreatment GAD10 and pretreatment HDRS scores for 

both criteria (all p values > .10). Table 2 summarizes the validation outcomes. 

 

3.1. Frontal alpha asymmetry from Arns et al. (2016) 
 

 

To align with the previous study (Arns et al., 2016), frontal alpha asymmetry (FAA) was assessed by 

the formula (F4-F3) of raw power values extracted from electrodes F4 and F3. A positive FAA 

indicates greater right than left alpha activity. A greater right FAA was reported in SSRI female 

responders but not in SNRI female responders previously (Arns et al., 2016), thus additional analysis 

without patients shifted to duloxetine was performed to allow direct comparisons between studies. 
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We found no group effect of FAA score (NeuroPharm: F (1, 24) = 0.14, p = .712) and no interaction 

was observed between conditions and group (NeuroPharm: F (1, 24) = 0.70, p = .412). Repeating the 

analysis for females only did not change the results (all p values > .31). 

 

However, after excluding patients with low serum concentrations and patients shifted to duloxetine 

(only female patients, remaining n = 35), the results revealed significant sex-specific partial 

correlations between FAA score and pretreatment HDRS6 scores (NeuroPharm: r (30) = -0.29, p 

 
= .048) and for the improvement at week 8 (NeuroPharm: r (30) = 0.32, p = .036) in eyes closed 

condition (Figure 3a), as well as in the eyes open condition (NeuroPharm: HDRS6: r (30) = -0.28, p 

 
= .060; HDRS6: r (30) = -0.31, p = .041). Consistent with previous study Arns et al. (2016), this 

association between treatment response and FAA was found in women but not in men. Since the 

general remission rate for female patients were 19.3%, and 24% of females with right FAA in favour 

for SSRI response. Therefore, the NNT for FAA is 21. When applying the response criteria of Arns et 

al. (2016), we did not find any discriminative value of FAA (all p values > .10). 

 

3.2. Alpha asymmetry from Bruder et al. (2001) 
 

 

Alpha asymmetry was assessed by integrating the alpha power at three regions: anterior (left, F3, F7; 

right, F4, F8), central (C3, T7; C4, T8), and posterior (P3, P7; P4, P8) (Bruder et al., 2001). Powers of 

overall alpha (7.8–12.5 Hz) and high alpha (10–12.5 Hz) were extracted independently at these three 

regions. Only data with eyes opened were assessed to align with previous study (Bruder et al., 2001). 

 

We found no significant main group effects (NeuroPharm: F (1, 31) = 2.05, p = .162; criteria of the 

 

previous study: F (1, 76) = 1.44, p = .235) but we saw a significant interaction between sex and group 

on alpha asymmetry (NeuroPharm: F (1, 31) = 6.36, p = .017. When using the same criteria as in 

Bruder et al. (2001), we saw a trend only (F (1, 76) = 2.89, p = .093). The analyses of simple effects 

showed that male non-responders had a greater right than left alpha power (NeuroPharm: 0.14 vs. - 

0.15 on logarithmic scale, p = .007; criteria of the previous study: 0.06 vs. -0.05, p = .03). This 

interaction disappeared after the exclusion of patients with low serum drug concentrations (p values 

 
> .05). No significant difference was found for high alpha power (p values > .10). 
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Exploratory analysis 
 
 

For validation purposes, i.e. adding regions as a within-subject factor, we also conducted the ANOVA 

without averaging the log alpha power at three regions. We found a significant four-way interaction 

between groups, sex, regions and hemisphere (NeuroPharm: F (2, 64) = 3.87, p = .041; criteria of the 

previous study: F (2, 150) = 4.31, p = .025). Analyses of simple effects showed not only greater right 

posterior alpha in male non-responders (NeuroPharm: 0.19 vs. -0.11, p = .022; NNT = 15; criteria of 

the previous study: 0.26 vs. -0.02, p = .008; NNT = 25), but also a less right central alpha in female 

non-responders (Criteria of the previous study: -0.62 vs. -0.55, p = .031; NNT = 42 (Figure 3b)). Post-

hoc analysis after excluding patients with low serum concentrations did not change the results (criteria 

of the previous study: F (2, 144) = 3.99, p = .032). No significant result was found for high alpha (p 

values > .10). 

 

3.3. Alpha power and alpha asymmetry from Bruder et al. (2008) 
 

 

Alpha power (7.8–12.5 Hz) was extracted from the occipital sites (O1, O2) and entered the statistical 

model. There was no significant difference in occipital alpha among groups (NeuroPharm: F (1, 29) = 

0.13, p = .723; criteria of the previous study: F (1, 65) = 0.83, p = .366), nor in occipital alpha 

asymmetry (NeuroPharm: F (1, 29) = 0.48, p = .496; criteria of the previous study: F (1, 65) = 0.19, p 

 
= .668). Repeating the analysis for right-handed only did not change the results (p values > .30). 
 
 
3.4. Theta current source density at ACC from Pizzagalli et al. (2001) 
 

 

A repeated ANOVA yielded a significant group effect (NeuroPharm: F (1, 33) = 5.10, p = .03), 

suggesting an overall higher ACC theta in non-responders compared to remitters (NeuroPharm: -

2.38 vs. -2.64 eLORETA unit, p = .03, Figure 2b). Furthermore, the Pearson correlation revealed a 

negative trend between the whole cluster (14 voxels) and the improvement at week 8 (NeuroPharm: 

HDRS6: r (79) = -0.18, p = .056), indicating that the lower pretreatment ACC theta was associated 

with the greater improvement on the depressive symptoms. The trend remained after exclusion of 

patients with low serum concentrations (NeuroPharm: r (76) = -0.17, p = .067). No significant results 
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were found when median cut of HDRS17 (Pizzagalli et al., 2001) was applied as defining 

treatment response (criteria of the previous study: p values > .12, Figure 2b). 

 

3.5. Theta current source density at ACC from Pizzagalli et al. (2018) 
 

 

For this analysis, we focused on determining whether the narrow theta (6.5–8 Hz) and the broad theta 

(4.5–7 Hz) bands were associated with symptom improvement at week 8. 

 

The partial correlation showed a trend of negative correlation between the narrow theta at the whole 

cluster (14 voxels) and the improvement at week 8 (NeuroPharm: HDRS6, r (44) = -0.21, p = .085; 

criteria of the previous study: HDRS17, r (44) = -0.23, p = .067), indicating that the lower pretreatment 

ACC narrow-theta was associated with greater improvement on the depressive symptoms at week 8. 

Excluding patients with low serum concentrations did not change the results (NeuroPharm: r (44) = - 

0.21, p = .087; criteria of the previous study: r (44) = -0.22, p = .075). No significant result was found 

for broad theta (p values > .29). 

 

3.6. Delta current source density at pg/ad ACC from Rentzsch et al. (2014) 
 

 

Pg/ad ACC delta was compared between groups by using the early responses at week 4 to align with 

the previous study (Rentzsch et al., 2014). Since HDRS21 was not included in the current study, 

HDRS17 Was used instead. Both criteria were used independently: NeuroPharm (see Figure 1 for the 

early status on treatment responses at week 4) and at least 50% reduction in HDRS17. 

 

There was no significant difference in pd/ad ACC delta among groups (NeuroPharm: F (1, 49) = 0.59, 

 

p = .448; criteria of the previous study: F (1, 81) = 0.99, p = .323). No significant correlation was 

 

found between pd/ad ACC delta and HDRS scores at week 4 (NeuroPharm: HDRS6, r (83) = -0.03, p 

 

= .390; criteria of the previous study: HDRS17, r (83) = 0.01, p = .477). 
 
 

4. Discussion 
 

 

This work aimed at cross-validating candidate qEEG biomarkers in MDD in a large independent 

prospective study. To the extent possible, the same EEG methodology, clinical definition of treatment 

response and statistical approach were applied, resulting in the partial validation of two studies (Table 
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2), both related to alpha asymmetry. In accordance with the literature (Arns et al., 2016), a sex-

specific effect for alpha asymmetry was observed with higher right frontal alpha power being 

associated with greater improvement of symptoms at week 8 in female MDD. Furthermore, female 

non-responders showed higher left alpha power at the central sites. Alpha asymmetry adds to the 

already existing treatment efficacy of drug with an NNT of 21 in female MDD (and 42 for female 

non-responders). Previous findings of ACC theta and pg/ad ACC delta for treatment prediction were 

not validated. In contrast to the previously reported higher ACC theta in favor for SSRI response, 

we found that non-responders had higher ACC theta compared to remitters (Figure 2). 

 

4.1. Alpha asymmetry 
 

 

In partial validation of prior work (Arns et al., 2016), we found that female patients with greater right 

FAA (decreased right cortical activation) had milder depressive symptoms on HDRS6 score prior to 

medication and show better improvement at week 8. In female non-responders, we found evidence for 

higher left central alpha asymmetry in the eyes-open condition compared to female responders. 

Although prior reports indicated an overall alpha asymmetry for non-responders (Bruder et al., 2001), 

with greater right cortical activity than left, and occipital alpha asymmetry (Bruder et al., 2008), our 

findings are only supportive of right hemisphere hyperactivation in non-responders (Arns et al., 2016; 

Bruder et al., 2008, 2001). Furthermore, we did not observe that FAA differ between remitters and 

non-responders (NeuroPharm) or between responders and non-responders (Arns et al., 2016) in 

neither eyes-open nor eyes-closed conditions. The reported NNT of alpha asymmetry reveals that 

every 21 women would benefit from the pretreatment selection, when a greater right FAA is present. 

 

The sex-specific finding supports the presence of a sex-dependent lateralization in the serotonergic 

neurotransmitter system. A sex-specific cortical lateralization has been associated with the 5-

HTTLPR (serotonin-transporter-linked polymorphic region) polymorphism (Volf et al., 2015). 

Furthermore, previous positron emission tomography (PET) studies have also found sex differences in 

cortical asymmetry of both the serotonin transporter (Kranz et al., 2014) and the serotonin 1A 

receptor (Fink et al., 2009). Future investigations on the sex-related asymmetry on cortical activation 
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(measured by EEG) and serotonergic system (measured by PET) could help understand 

this observation. 

 

4.2. Delta/Theta current source density at ACC 
 

 

Unlike prior studies (Korb et al., 2009; Mulert et al., 2007; Pizzagalli et al., 2001, 2018; Rentzsch et 

al., 2014), we did not find that higher slow-frequency activity at ACC was associated with better 

response; instead we found that remitters had lower theta activity at ACC compared to non-responders 

(Figure 2). Our results are aligned with the finding from one of the largest qEEG studies in MDD so 

far, the International Study to Predict Optimized Treatment in Depression (iSPOT-D), where they also 

report a lower theta activity in treatment responders (Arns et al., 2015). There seems to exist treatment 

specificity on theta activity in relation to treatment response, as proposed by Arns et al. (2015). Future 

studies are needed to investigate whether ACC theta power could inform about which type of 

antidepressant treatment to use. 

 

4.3. Outcome depends on MDD scale or clinical criteria 
 

 

The discriminative power of qEEG differed depending on the clinical rating scale used: We observed 

an association between FAA and HDRS6 at week 8 but not when HDRS17 was applied. We argure it is 

possible that HDRS6 is more sensitive to the treatment outcome. The HDRS6 excludes three negative 

side effects (somatic and gastrointestinal; sexual dysfunction; loss of weight). Thus the exclusion of 

less relevant or noisy items in the HDRS6 should provide a better signal for estimating antidepressant 

response compared with HDRS17 (Bech et al., 2010, 2006; Østergaard et al., 2016). We found that 

ACC theta was associated with treatment responses defined by HDRS6 but not with HDRS17. We 

propose that the HDRS6 should be favored in future EEG studies of treatment responses. 

 

4.4. Limitations 
 

 

Despite the efforts to validate previous studies as closely as possible, several factors limit the 

interpretation of this study. First, the different recording lengths of resting EEG between studies was 

disregarded in the current analysis although vigilance states and EEG profiles might be tightly 
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associated (Hegerl and Hensch, 2014; Olbrich et al., 2016). In addition, high-dimensional montage 

(257-channel) was used for source analysis instead of the montages used in previous studies 

(Pizzagalli et al., 2001, 2018; Rentzsch et al., 2014). The high-dimensional recording aimed at 

reducing the possible topographical interpolation, resulting in a more accurate estimation of the 

current source density. However, we cannot exclude that this difference could result in inconsistencies 

between the current and the prior results. Further investigation of the robustness of the location of 

rACC derived from various montages is needed. Finally, validations were impacted by the variability 

in clinical measures used in previous studies although we attempted to take that into account. 

 

5. Conclusions 
 

 

We could partially validate two out of six qEEG candidate biomarkers, which were both related to 

alpha asymmetry. Applying FAA alongside with treatment would increase efficacy around 20%. 

Future, prospective studies of qEEG biomarkers should aim to standardize recording length, 

montages, marker calculation and clinical measures, and it is also possible that a combination of 

markers might increase the accuracy for treatment prediction. 
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Table 1 The listed studies for validation and the details of previous published biomarkers 
   

Notes: 1 C refers to eyes closed, and O refers to eyes open. 2 The study did not provide information on the numbers for treatment responders/non-responders. 

Abbreviation: R, responders; NR, non-responders; SSRI, selective serotonin reuptake inhibitor; FAA: frontal alpha asymmetry; rACC, rostral anterior cingulate 

cortex; pg/ad ACC, perigenual and anterior dorsal anterior cingulate cortex; HDRS, Hamilton Depression Rating Scale; CGI-I, Clinical Global Impression 

Improvement scale; BDI, Beck Depression Inventory. 
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Studies qEEG biomarkers 
Recording 

duration 
R NR Clinical evaluation Medication Response criteria 

Arns et al., 

(2016) 

Greater FAA 

[(F4+F3)/(F4-F3)] in R 

and better response to 

SSRI in female 

Two 2-min (CO1 or 

OC) 
427 240 HDRS17; Baseline, week 8 

escitalopram, 

sertraline, 

venlafaxine 

R: ≥ 50% improved on 

HDRS17. Remission: 

score of ≤ 7 on the 

HRSD17 

Bruder et al., 

(2001) 

Less right alpha (F3, F7, 

F4, F8, C3, T7, C4, T8, 

P3, P7, P4, P8) than left 

in female NR 

Four 2-min (COOC 

or OCCO) 
34 19 CGI-I; Baseline, week 12 fluoxetine 

R: “Much improved” or 

“very much improved” 

on CGI-I 

Bruder et al., 

(2008) 

1. Greater occipital alpha 

(O1, O2) in R; 2. Greater 

right hemispheric alpha 

in R. 

Four 2-min (COOC 

or OCCO) 
11 7 CGI-I; Baseline, week 12 fluoxetine 

R: “Much improved” or 

“very much improved” 

on CGI-I 

Pizzagalli et 

al., (2001) 

Higher rACC theta 

(LORETA) activity, 

better response 

Ten 3-min 

(COCOCOCOCO 

or 

OCOCOCOCOC) 

9 9 BDI; Baseline, 4-6 months nortriptyline 
Median split of BDI 

scores 

Pizzagalli et 

al., (2018) 

Higher rACC theta 

(LORETA) activity, 

better response 

Four 2-min (COOC 

or OCCO) 
2482 

HDRS17; Baseline, weeks 1, 2, 3, 4, 6, 

and 8 

sertraline, 

placebo 

Absolute score on 

HDRS17 

Rentzsch et 

al., (2014) 

Higher right pg/adACC 

(LORETA) delta in R 
≥ 10 min (C) 11 20 HDRS21; Baseline, weeks 2 and 4 various SSRIs 

R:  ≥ 50% improved on 

HDRS21 at week 4. 



 

Table 2 Summary of the statistical analysis and the validation results   

Notes: 1 The chosen models followed the resampled study as close as possible. Only the biomarkers that has been found to associate with treatment response in 

the previous study were examined here. 2 Tailored from the final model reported in the study of Pizzagalli et al., (2018). 3 Criteria of NeuroPharm and of the 

previous studies were reported separately. 4An opposite direction of the resample study was observed. 

 

Abbreviation: ANOVA, repeated-measures analysis of variance; FAA, Frontal alpha asymmetry; ACC, anterior cingulate cortex; HDRS, Hamilton Depression 
 

Rating Scale. 
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Study Statistical analysis1 Included covariates 

Results3 

Criteria of 

NeuroPharm 

Criteria of the 

previous study 

Arns et al. 

(2016) 

Primary: ANOVA with FAA score under different conditions 

and responses’ groups. Sex-specific effect on female patients. 

Secondary: Partial correlation between FAA and HDRS scores. 

Exploratory: ANOVA with hemisphere and groups.  

Age, sex, pretreatment anxiety 

level and pretreatment HDRS 

score. Age and sex were included 

in the exploratory analysis. 

Partial validation: 

Greater right FAA, 

better response in 

female 

No validation 

Bruder et al. 

(2001) 

Primary: ANOVA with alpha power (overall and high alpha) 

on both hemisphere, groups and sex were tested.  

Exploratory: ANOVA with regions (anterior, central, 

posterior), hemisphere, groups and sex were tested. 

Not applicable No validation 

Partial validation: 

Less right central 

alpha in female NR 

Bruder et al. 

(2008) 

Primary: ANOVA with hemisphere and condition and groups. 

Possible handedness effect on right-handed patients were 

examined. 

Number of years of education No validation No validation 

Pizzagalli et 

al. (2001) 

Primary: ANOVA with narrow ACC theta (14 voxels) and 

groups. 

Secondary: Pearson correlation between ACC theta and HDRS 

scores. 

Not applicable No validation4 No validation 

Pizzagalli et 

al. (2018) 

Primary: Partial correlation between ACC theta (narrow and 

broad theta) and the ΔHDRS at week 8. 

Age, sex, race, marital status, 

employment status, pretreatment 

anxiety level and pretreatment 

HDRS score3 

No validation4 No validation4 

Rentzsch et 

al. (2014) 

Primary: ANOVA with ACC delta (22 voxels) and groups.   

Secondary: Pearson correlation between ACC delta and 

ΔHDRS at week 4.  

Not applicable No validation No validation 



 

Figure captions:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Study flowchart and the definition of treatment response in NeuroPharm. Antidepressant-free 

patients diagnosed with MDD were included and allocated to baseline intervention. Resting EEG data 

were collected at pretreatment and week 8 after treatment intervention. Compliance, side-effects to 

antidepressant treatment, and clinical evaluations of patients were conducted by a trained clinician at each 

visit (week 1, 2, 4, 8 and 12). The treatment responses were measured by HDRS6 ((HDRS score at 

week 4/8 - HDRS score at pretreatment)/ HDRS score at pretreatment) and defined as follows: 

 
Patients with HDRS6 > 50% at week 4 were considered early responders; Patients with HDRS6 < 

25% at week 4 were considered early non-responders; Patients with HDRS6 > 50% at week 4, and < 

5 points on the HDRS6 scale at week 8 were considered remitters; Patients with HDRS6 < 25% at 

week 4 and HDRS6 < 50% at week 8 were considered non-responders. The other patients were 

considered intermediate responders. 
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Figure 2. a. The visualization of the chosen MNI-coordinates (view angle: [X, Y, Z] = [7, 35, 16] mm). 

Theta power was extracted from a rACC cluster (identical 14 voxels from 5,9, highlighted as red) and delta 

power was extracted from pg/adACC (identical 22 voxels from 23, highlighted as yellow). b. Theta 

activity at rACC cluster (red blocks) for both response criteria: NeuroPharm and the previous study 

(Pizzagalli et al., 2001). Logarithmic theta current source density was extracted from rACC using 

eLORETA. When the criteria of NeuroPharm was assessed, the results showed a significant higher ACC 

theta in non-responders compared to remitters. No such difference was observed when the criteria of the 

resampled study was assessed. Data were visualized the same way as the resampled study (Pizzagalli et al., 

2001). 

 
Note: *: p < .05. 
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Figure 3. a. A negative partial correlation was found between FAA score and HDRS6 scores at week 8 

(Figure 3a left panel) and a positive partial correlation was found between FAA score and ΔHDRS6 at 

week 8 (Figure 3a right panel). Grey areas indicate 95% confident intervals for the fitted lines. b. Mean 

alpha asymmetry when the criterion of the study of Bruder et al. (2001) was used. Error bars indicate 

standard deviations. A positive score means that alpha power is larger in the right than in the left region. 

Data were visualized the same way as the resampled study (Bruder et al., 2001).  

Note: *: p < .05. 
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ABSTRACT: 

 

While several electroencephalogram (EEG)-based biomarkers have been proposed as diagnostic 

or predictive tools in major depressive disorder (MDD), there is a clear lack of replication studies 

in this field. Markers that link clinical features such as disturbed wakefulness regulation in MDD 

with neurophysiological patterns are particularly promising candidates for e.g. EEG-informed 

choices of antidepressive treatment. We investigate if we in an independent MDD sample can 

replicate abnormal findings of EEG-vigilance regulation during rest and as a predictor for 

antidepressive treatment response. EEG-resting state was recorded in 91 patients and 35 healthy 

controls from the NeuroPharm trial. EEG-vigilance was assessed using the Vigilance Algorithm 

Leipzig (VIGALL). We compared the vigilance regulation during rest between patients and 

healthy controls and between remitters/responders and non-remitters/non-responders after eight 

weeks of SSRI/SNRI treatment using two different sets of response criteria (NeuroPharm and 

iSPOT-D). We replicated previous findings showing hyperstable EEG-wakefulness regulation in 

patients in comparison to healthy subjects. Responders defined by the iSPOT-D criteria showed 

faster declines toward low vigilance stages in comparison to patients with no response at 

pretreatment, however this did not apply when using the NeuroPharm criteria. EEG-wakefulness 

regulation patterns normalized toward patterns of healthy controls especially in responders and 

remitters after 8 weeks of treatment. This replication study supports the diagnostic value of EEG-

vigilance regulation and its usefulness as biomarker for the choice of treatment in MDD. 

Clinical Trials Registration: https://clinicaltrials.gov/ct2/show/NCT02869035?draw=1 

 
Registration number: NCT0286903. 

 

Keywords: EEG, VIGALL, antidepressant treatment effect, SSRI, MDD, biomarker 
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INTRODUCTION 

 

Despite concerted efforts, there is still a lack of validated objective biomarkers in major depressive 

disorder (MDD) (Kennis et al., 2020) although this would be useful not only for differential 

diagnostic purposes but also for predicting pharmacological treatment response (Olbrich and Conradi, 

2016). Neurophysiological methods have gained attention as they provide an affordable framework 

that reflects the functional aspects of the nervous system at a high-resolution timescale (Olbrich and 

Arns, 2013; Widge et al., 2018). In particular, electroencephalogram (EEG) is a non-invasive 

measurement of neuronal activity with the potential to provide clinically relevant biomarkers 

(Grzenda and Widge, 2020; Olbrich and Arns, 2013; Rolle et al., 2020a). 

 
Dysregulation of sleep and wakefulness is part of the diagnostic criteria for MDD (Nutt et al., 2008; 

Seifritz, 2001): Patients often feel tired and fatigued during the day but have difficulties falling asleep 

and wake up early which leads to a vicious cycle of sleep disturbances and tiredness. 

Polysomnographic measurements have with some success been used to differentiate patients and 

healthy controls (Thase, 2006), but there is only limited value for those markers to predict 

antidepressive drug response (Steiger and Pawlowski, 2019) and is not sensitive to important aspects 

of the sleep-wake dysregulation in MDD. The Vigilance Algorithm Leipzig (VIGALL) has been 

developed to identify and analyze different functional brain states from full wakefulness to sleep 

onset with closed eyes by using EEG and electrooculogram data (Hegerl et al., 2012; Olbrich et al., 

2015). The outcome of the algorithm has been compared with other imaging modalities (Guenther et 

al., 2011; Olbrich et al., 2009) and clinical data (Jawinski et al., 2015). 

 
According to the VIGALL framework of EEG wakefulness regulation, MDD patients tend to show a 

hyperstable wakefulness regulation with fewer declines toward relaxation and sleep stages in 

comparison to healthy subject (Hegerl and Hensch, 2014; Olbrich et al., 2012). For the full clinical 

utility of VIGALL, it is essential to demonstrate its prognostic power for treatment outcome. So 
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far, two studies have investigated this. Data from the International Study to Predict Optimised 

Treatment - in Depression (iSPOT-D) (Williams et al., 2011) showed that patients with a good 

response to selective serotonin reuptake inhibitors (SSRIs) had a faster decline of wakefulness 

during a two-minute resting state than non-responders (Olbrich et al., 2016a). Contradictory, a 

study by Schmidt et al., (2017) showed that patients with a pronounced hyperstable wakefulness 

regulation during 15 minutes of rest were more likely to respond to SSRI treatment. 

 

To resolve these differences and to overcome the limitations of missing replications (Widge et al., 

2018), the aim of this study was to investigate the VIGALL outcomes in an independent cohort 

of patients with MDD from the NeuroPharm trial (Köhler-Forsberg et al., 2020). We wanted to 

see if we could replicate 1) the findings of a hyperstable EEG wakefulness regulation in MDD in 

comparison to healthy controls and 2) the predictive properties of the VIGALL algorithm with 

respect to treatment outcome for SSRIs and SNRIs. It was hypothesized that 1) patients suffering 

from MDD will show more high vigilance stages and fewer declines toward sleep stages in 

comparison to healthy controls and 2) that responders will show a less stable EEG wakefulness 

regulation over time as assessed with the VIGALL algorithm. In an exploratory analysis, we also 

assess the treatment effect on VIGALL parameters. 

 

 

MATERIALS AND METHODS 

 

NeuroPharm is a non-randomized, open label clinical trial in an outpatient setting. A completed 

consortium diagram and the flowchart of the study protocol are available elsewhere (Köhler-

Forsberg et al., 2020, also see Figure 1). 

 
Subjects 

 

One-hundred medication-free MDD outpatients were recruited and their diagnosis was 

ascertained by a Mini-International Neuropsychiatric Interview (Sheehan et al., 1998) and 
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confirmed by a certified psychiatrist. Details of inclusion and exclusion criteria are described 

elsewhere (Köhler-Forsberg et al., 2020). Thirty-five healthy subjects were included as controls 

(See Table 1 for demographic features). All participants provided written informed consent 

prior to participation. Ethical approval was obtained by the National Committee on Health 

Research Ethics (protocol: H-15017713). 

 

After pretreatment visit, patients were treated first line with the SSRI escitalopram at flexible 

doses of 5–20 mg/day. Doses were adjusted depending on effects and side effects by trained 

physicians at each visit at weeks 1, 2, 4, 8 and 12. Hamilton Depression Rating Scale 6 items 

(HDRS6) was used for assessment of antidepressant response since it has been shown to be more 

sensitive to treatment outcome (Bech et al., 2010, 2006; Østergaard et al., 2016). Patients with no 

response to escitalopram after 4 weeks, or with intolerable side effects were offered second line 

treatment with the selective serotonin noradrenalin reuptake inhibitor (SNRI) duloxetine, with a 

dose ranging of 30–120 mg/day (n = 15). 

 
EEG recordings were obtained at pretreatment visits (unmedicated) for all included participants, 

and 40 of the patients were recorded again after 8 weeks of treatment. A total of 79 patients (See 

Figure 1 for the exclusion reason) and 35 healthy controls were included in the per-protocol 

analyses for the pretreatment data. In order to explore the drug effect, three patients suspected of 

non-compliance because of drug levels below ≤ 5 nM at week 8 were excluded from the post-hoc 

analysis. EEG data from 39 patients  ́data was available for further analyses at 8 weeks follow-up. 

 

 

Clinical measures and treatment response 

 

The treatment responses of NeuroPharm were measured as percentage change in HDRS6 score 

from baseline to week 4 or 8 (ΔHDRS6). Three categorical treatment outcomes were defined 
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(Figure 1): Remitters included patients with ΔHDRS6 > 50% at week 4 and < 5 points on the 

HDRS6 scale at week 8; non-responders included patients with ΔHDRS6 < 25% at week 4 and 

ΔHDRS6 < 50% at week 8 were considered non-responders. Patients who did fulfill either 

remitter or non-responder criteria were classified as intermediate responders (Figure 1). 

 

To allow comparisons with already existing studies, the criterium defined by the NeuroPharm 

consortium (Köhler-Forsberg et al., 2020) and the one used for the iSPOT-D data (Olbrich et al., 

2016b) were assessed. When treatment response of iSPOT-D was assessed, using the 

NeuroPharm data, remission was defined as a score of 7 at week 8 on HDRS17 and response as > 

50% decrease in ΔHDRS17 (from pretreatment to week 8). 

 

 

EEG recordings 

 

Resting EEG was recorded during four 3 min periods with a counterbalanced order of OCOC (O 

for eyes open, C for eyes closed) or COCO between subjects (details of recording condition are 

detailed elsewhere: Ip et al., submitted). EEG data was acquired from a 256-channel HydroCel 

Sensor Net system (EGI, Inc., Eugene, OR) at 1000 Hz sampling rate and referenced to the vertex 

electrode. Impedances were kept below 50 kΩ. 

 

 

EEG processing and classification of EEG-vigilance 

 

Corrupted channels were interpolated using spline interpolation (Perrin et al., 1989). Twenty-five 

VIGALL EEG channels were selected from our high-density net according to the VIGALL manual 

(VIGALL 2.1 manual; https://research.uni-leipzig.de/vigall/). HEOG was recorded from two 

electrodes at the outer canthi of the right and left eye and VEOG was recorded from the infraorbital 

and supraorbital regions of the right eye, keeping it as close as possible to the VIGALL manual. The 

EEG with the applied VIGALL montage was down-sampled to 250 Hz and re-referenced 
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offline to an average reference. The data was cut into 1s epochs for visual artifact inspection such 

as movement and electrical artifacts and was further processed in Brain Vision Analyzer 2.0 

(Brain Products GmbH, Glitching, Germany). Artefact segments were marked, but not removed 

to retain the full time series for each subject. A zero-phase digital IIR Butterworth bandpass filter 

with cut-off frequencies 0.5 and 70 Hz, and a 50 Hz notch filter was applied to the EEG-data 

after eye-movement artifacts correction (independent component analysis approach). 

Electrooculogram channels were bandpass filtered with cut-off frequencies below 0.01 and above 

70 Hz to retain slow eye movements. 

 
EEG-vigilance was assessed from the eye-closed resting EEG data by using the algorithm-based 

Vigilance Algorithm Leipzig (VIGALL 2.0, 11, 12). Slow eye movements (SEMs) criteria were set to 

100 µV with a 6 second window length to detect any drowsiness in the recording (Jödicke et al., 2013; 

Santamaria and Chiappa, 1987). Each 1s epochs was automatically classified into the following 

arousal states, resulting in a vigilance time-course: stage 0 (highest arousal), A1, A2, A3, B1, B2/3, C 

(lowest arousal, sleep onset, classified visually by sleep grapho-elements from an experienced rater), 

according to the classification from (Bente, 1976; Roth, 1961; Santamaria and Chiappa, 1987). The 

arousal continuum was classified mainly based on the distribution of alpha cortical current density 

over four distinct regions of interests (ROIs): frontal, central, temporal and occipital. In a typical case, 

non-alpha activity with the absence of SEMs would first appear after closing eyes (stage 0). The 

alpha activity would then dominate gradually from occipital (A1) to central and frontal (A2), and to 

mainly centralized at frontal area (A3) along with the relaxation of the participant. Subsequently, 

alpha activity would disappear and replaced by low amplitude activity with SEM (B1) then dominate 

by delta and theta activity (B2/3) (for details refer to VIGALL 2.1 manual). Since no subject showed 

stage C segments and the prevalence of stages A2 and A3 have been quite low in previous studies, we 

followed the usual procedure of pooling two 
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A stages (A2/3), resulting in five different vigilance stages (0, A1, A2/3, B1, B2/3) and were 

assigned numerically with a range from 6 (stage 0) to 2 (stage B2/3). To align with previous 

studies, median vigilance of each 1 minute-block of eyes closed condition (in total of 6 blocks) 

was calculated for its ordinal-scale feature (Olbrich et al., 2016a). Further, the slope of the 

median vigilance was calculated from each 3 min eyes closed recording (vigilance slope). A 

positive slope indicated less decline toward sleep while a negative slope indicated more 

pronounced decrease of vigilance toward drowsiness. Percentages of the different vigilance 

stages were calculated after subtraction of the number of artefact segments. 

 
Statistics 

 

Percentages of each vigilance stage at each block (5 states × 6 blocks), median vigilance of each 

block (6 blocks) and vigilance slope (two separate eyes closed recordings from one session: 1
st

 

and 2
nd

 recordings) were correspondingly subjected to repeated-measures analysis of variance 

(ANOVA) to determine whether there were temporal dynamic changes in EEG vigilance patterns 

 
> between pretreatment MDD and healthy controls, 2) in pretreatment vigilance between remitters 

and non-responders (NeuroPharm criteria); between responders and non-responders (iSPOT-D 

criteria); between remitters and non-remitters (iSPOT-D criteria), 3) between pretreatment and after 8 

weeks of treatment (follow-up), and whether these differences were distinct in remitters and non-

responders (NeuroPharm criteria); between responders and non-responders (iSPOT-D criteria); 

between remitters and non-remitters (iSPOT-D criteria). Age was included as covariate. Significant 

interactions were examined by analysis of simple effects. Bonferroni's correction was used for 

multiple comparisons and post hoc analyses. Degrees of freedom were corrected by Greenhouse-

Geisser correction when necessary. In order to assess the discriminative power, the analysis of 

Receiver Operator Curve (ROC) was performed for any successful discriminant on the clinical 

outcome. Group differences in sex, age, educational scores, pretreatment generalized 
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anxiety disorder-10 score (GAD10) (Bech et al., 2005), pretreatment HDRS scores and HDRS scores 

at week 8 were tested by simple t statistic or using the χ
2
 statistic (sex). Two-sided p values were 

chosen for all tests. To investigate the vigilance effect on clinical outcome, a correlation analysis on 

HDRS scores (both HDRS6 and HDRS17) and vigilance slope was performed. 

 

 

RESULTS 

 

Sociodemographic characteristics 
 

 

Patients with MDD and healthy controls did not differ in age and sex (all p values > .32, Table 1), but 

the healthy controls had a higher education score compared to patients (t (98) = -2.607, p = 

 
.011). Pretreatment HDRS score did not differ significantly between remitters and non-

responders (NeuroPharm criteria) nor between responders and non-responders (iSPOT-D criteria) 

(p values > .23). No significant difference was found on GAD10 measures (p values > .05, Table 

1) 

 

 

Pretreatment MDD patients vs. Healthy Controls 

 

A repeated ANOVA with age as covariate yielded a significant group effect of median slope (F (1, 

123) = 4.59, p = .034, Table 2), indicating that prior to treatment MDD patients had less 

pronounced declines toward sleep stages in comparison to healthy controls in the first 3 min 

recording (-0.02 vs. -0.26, p = .011, Figure 2 left panel). No significant group effect was found 

for median EEG-vigilance or percentages of each stage at each block (p values > .05). 

 

 

VIGALL as predictor for clinical outcome 
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There was no significant difference in median vigilance, percentages of each stage or vigilance 

slope between remitters and non-responders prior to treatment (NeuroPharm criteria, p values > 

 

.51). When using the iSPOT-D criteria, we observed a significant interaction between vigilance 

slope and group (F (1, 76) = 4.16, p = .045, Table 2). The analyses of simple effects showed that 

responders had more pronounced declines toward sleep stages compared to non-responders in the 

first 3 min recording (1
st

 recording: -0.11 vs. 0.13, p = .042), but not the second 3 min recording 

(2
nd

 recording: p = .70, Figure 2, right panel). Post-hoc analysis indicated that excluding patients 

with low serum concentrations slightly affected the results, but the trend remained (F (1, 73) = 

3.86, p = .053; 1
st

 recording: -0.11 vs. 0.14, p = .044). However, receiver operator characteristics 

yielded an area under the curve of only .60 (p = .12). No significant difference was found for 

median vigilance or percentages of each stage (p values > .32). The associations between HDRS6 

change and vigilance slope was r (80) = -.16 with p =.158 for the 1
st

 and r (80) = .03, with p =.81 

for the 2
nd

 recording. We did not find any significant correlation when correlating ΔHDRS17 

scores at week 8 and vigilance slope (1
st

 recording: r (80) = -.12, p =.286; 2
nd

 recording: r (80) 

= .05, p =.650). 

 

 

Treatment effects on VIGALL parameters 

 

By pooling all patients’ data regardless of their treatment responses, we found a significant 

interaction between recording time (pretreatment vs. follow-up) and stage (F (4, 152) = 3.11, p = 

 
.026), demonstrating that MDD patients had a higher amount of low vigilance stage B1 (23% vs. 35%) 

at follow-up in comparison to pretreatment (Figure 3). Moreover, there was a trend of decreased 

median vigilance in MDD patients when comparing follow-up versus pretreatment (4.32 vs. 4.06, p 

= .08), suggested by the borderline significant effect of recording time (F (1, 190) = 3.24, p = .080). 

Post-hoc analysis after excluding patients with low serum concentrations did not 
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change the direction of the results (recording time × stage: F (4, 144) = 3.68, p = .012; median 

vigilance: F (1, 36) = 4.12, p = .049). No significant result was found for median slope (p > .79). We 

further investigated the treatment effects on patients with different clinical outcomes. There was a 

significant interaction between recording time (pretreatment and treatment) and vigilance stages on 

remitters (i.e. pretreatment remitters vs. follow-up remitters: F (4, 40) = 3.16, p = .049) but not non-

responders (NeuroPharm criteria, p = .625, Figure 4). Analyses of simple effects showed that 

remitters had a higher percentage of stage B1 segments (14% vs. 35%, p = .008) after 8 weeks of 

treatment. A similar effect was observed when examining the iSPOT-D criteria (F (4, 

 
96) = 4.84, p = .002), indicating that responders had a higher amount of vigilance stage B1 (23% vs. 

40%, p = .002, Figure 4) after treatment but not non-responders (p = .58). Remitters (iSPOT-D 

criteria) also showed a trend towards a larger amount of stage B1 (21% vs. 39%, p = .026) after 

treatment, suggested by a borderline significant interaction between recording time and stage (F 

 
(4, 52) = 2.72, p = .061, Figure 4). Furthermore, a significant main recording time effect of 

median vigilance (F (1, 24) = 7.17, p = .013) was observed for responders (iSPOT-D criteria), 

showing that responders had lower median vigilance at follow-up (4.41 vs. 3.93, p = .013) in 

comparison to pretreatment. Post-hoc analysis after excluding patients with low serum 

concentrations did not change the results. 

 

 

Exploratory analysis: Normalization effect on VIGALL parameters after 8 weeks of treatment 

 

Since treatment effects for vigilance stage B1 were observed for all MDD patients and patients with 

good treatment response, we decided to further examine if there was any normalization effect towards 

patterns of EEG-vigilance of healthy controls in these patients. T statistics for recording time and 

comparing patients with healthy controls at stage B1 revealed that pretreatment MDD had a lower 

amount of vigilance stage B1 compared to healthy controls (t (72) = -2.09, p = .040, Figure 
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4). This difference had disappeared after 8 weeks of treatment (treatment MDD vs. HC: t (72) = - 

0.11, p = .910). When assessing normalization effects on patients with good treatment response, 

we found that remitters had a lower percentage of stage B1 compared to healthy controls 

(NeuroPharm criteria: t (44) = -2.38, p = .022, Figure 4) while this difference was not present 

when assessing follow-up remitters and healthy controls (p = .972). Similarly, responders (t (58) 

= -1.78, p = .081) and remitters (t (47) = -1.69, p = .098) showed a trend of lower stage B1 at the 

pretreatment visit (iSPOT-D criteria, Figure 4). The trend disappeared after 8 weeks of treatment 

(responders vs. healthy controls: p = .55; remitters vs. healthy controls: p = .66). 

 
 

 

DISCUSSION 

 

This study on EEG-vigilance based biomarkers replicated in an independent sample of MDD 

patients: the discriminative feature of the attenuated wakefulness regulation toward sleep onset 

during rest for depressed patients in comparison to healthy subjects and the distinction between 

responders and non-responders to SSRI/SNRI treatment. Although EEG research recently 

showed the possible usage of EEG biomakers in depression (Arns et al., 2016; Olbrich et al., 

2016a; Pizzagalli et al., 2018; Rolle et al., 2020b; Wu et al., 2020), many limitations restrict the 

clinical usage up to today (Widge et al., 2018). One of the main limitations was the missing 

replication in independent datasets of any of the markers (Widge et al., 2018). Hence these 

findings and replications might help to guide the way into clinical practise. 

 

 

EEG-vigilance in Major Depression 

 

The Vigilance framework (Hegerl and Hensch, 2014) states that patients suffering from MDD show a 

more rigid wakefulness regulation during rest. That means that their functional brain states, as 
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assessed with EEG, stay at high wakefulness levels during the resting state, as shown before 

(Hegerl et al., 2012; Olbrich et al., 2012). This observation may reflect the difficulties of 

depressed patients to fall asleep and the high inner tensions. At the behavioral level, patients may 

try to counteract the hyperstable vigilance by avoiding any arousing activities (Hegerl and 

Hensch, 2014). The EEG Vigilance measurements allow to assess the timecourses of this 

wakefulness regulation. Previous studies showed a hyperstable vigilance regulation in 

unmedicated patients, having more high vigilance stages than heatlhy controls (Hegerl et al., 

2012; Olbrich et al., 2012; Schmidt et al., 2017). The data from the NeuroPharm study 

independently replicates that there is a significant difference between patients and controls. 

Although this is a replication of the discriminative feature, the presented study only used a 

relatively short EEG resting state segment in comparison to previous studies, thus proving that 

the differences can be assessed already with a 3 min resting state paradigm. 

 

 

EEG vigilance and treatment response 

 

So far, two studies have investigated the predictive value of EEG-vigilance regulation in MDD for 

pharmacological antidepressant treatment (Olbrich et al., 2016a; Schmidt et al., 2017). In a large 

cohort of 599 patients, one study found an association between the slope of EEG vigilance, i.e. the 

change of vigilance over time, and the response to SSRI treatment using a two-minute resting state 

EEG (Olbrich et al., 2016a). In a smaller cohort of 65 patients, hyperstable EEG vigilance regulation 

was associated with a better response to different types of antidepressive drug when using a much 

longer EEG vigilance resting state session of 15 min. The response in the Schmidt et al., (2017) study 

was defined as a decline of HDRS of 50% after 28 days whereas the NeuroPharm study assessed 

clinical response after 56 days. In the present study, we replicate the findings from the iSPOT-D 

study (Olbrich et al., 2016a), showing that a faster decline towards lower vigilance 

 

Cheng-Teng Ip et al. 13 



 

stages are linked with a significantly better outcome following SSRI treatment. Importantly, 

however, the replication could only be found when the iSPOT-D response criteria were applied, 

and not with the NeuroPharm criteria. This highlights the importance of using standardized 

outcome measures when comparing studies. As stated in Widge et al., (2018) replication needs to 

stick to the used methods from the studies to be replicated. Since this is the first independent 

replication of treatment prediction using EEG vigilance measures in a retrospective analysis, the 

next step would be a prospective study to show the efficacy of an EEG-informed treatment 

choice in a randomiuzed controlled design. 

 

 

Treatment effect on EEG vigilance 

 

The findings from the present study showed that remitters (NeuroPharm criteria) and responders 

(iSPOT-D criteria) after 8 weeks of treatment revealed lowered vigilance and increased 

downregulation of EEG-vigilance. Further, when comparing remitters and responders to EEG-

vigilance profiles of healthy subjects, the wakefulness regulation seemed to normalize. This was 

not the case in non-remitters or non-responders (for neither the NeuroPharm nor iSPOT-D 

criterion). It is noteworthy that the normalization of EEG wakefulness parameters was mainly 

restricted to the stage B1, a brain state with desynchronized EEG activity and thus low amplitude 

in association with horizontal slow eye movement (Santamaria and Chiappa, 1987). This stage 

reflects the transition between the alpha-dominated period after closing the eyes and the 

occurrence of slow wave activity just before sleep onset. The increasing amount of B1 stages in 

responders after 8 weeks of treatment may reflect the normalization of the wakefulness regulation 

toward patterns of healthy subjects. Thus, it might be hypothesized that stage B1 is a gate-

keeping brain state: Patients suffering from MDD might have difficulties to pass through these 

desynchronized stages to achieve recreational rest. 
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In summary, our findings support that wakefulness regulation in patients suffering from MDD 

shows hyperstable patterns with less drifts toward lowered vigilance during rest. The degree of 

rigidity further seems to be associated with the response to pharmacological treatment: Patients 

with the most hyperstable vigilance regulation seem to profit less from this kind of treatment. In 

addition, the wakefulness regulation profiles of responders and remitters seems to normalize after 

successful treatment, while this is not the case in non-responders or non-remitters. In a clinical 

context, these observations could be useful to 1) initiate other treatments than SSRI treatment in 

subjects with hyperrigid EEG vigilance regulation 2) augment treatment early in the course of 

intervention in patients with hyperrigid EEG-vigilance regulation and 3) provide patients with 

pronounced declines of EEG-vigilance regulation a treatment with SSRIs in a shared decision-

making process. 4) stratify patients in future drug development programs. 

 

 

Limitations 

 

The NeuroPharm study is a naturalistic study without any placebo arm, meaning that eventual 

drug effects on vigilance measures cannot be assessed. This was, however, been done in 

preclinical studies that SSRI treatment decrease the firing rate of the locus coeruleus (LC) and 

thus decrease vigilance stages (Hegerl and Hensch, 2014). Another potential limitation is that the 

recording of the EEG-resting state was limited to 2x3 min; in Schmidt et al., (2017) recordings 

were longer. However, 2x3 min recording seems to be sufficient since we could replicate the 

differential properties of EEG wakefulness regulation for healthy controls and patients. 

 

 

Conclusions 
 
 
 
 
 

Cheng-Teng Ip et al. 15 



 

Our findings based on EEG data from the NeuroPharm trial independently confirm the previously 

reported usefulness of EEG-vigilance biomarkers for predicting outcome to SSRI treatment in 

MDD. Whereas, this is an important step towards possible clinical applications. Future research 

should include 1) identification of treatment approaches that work better for patients with a 

hyperrigid EEG-vigilance regulation and 2) a larger prospective randomized controlled trial with 

a treatment as usual group and an EEG-vigilance regulation informed treatment group. 

 

 

Acknowledgments: We thank all the participants that included in the study. Special thanks to 

Gerda Thomsen, Svitlana Olsen and Lone Freyr for the recruitment of healthy controls and the 

preparation of the blood samples. 

 

 

Funding and Disclosures: Collection of the data included in the study was supported by 

Innovationsfonden, Denmark (4108-00004B) and by the Lundbeck Foundation (Cimbi: R90-

A7722). C.I. was supported by the Innovationsfonden, Denmark (5189-00087A). M.G. was 

supported by the Lundbeck Foundation (R181-2014-3586) and the Elsass foundation (18-3-0147). 

V.D. was supported by Augustinus Foundation (16-0058) and Rigshospitalet’s Research (R149-

A6325). M.J. was supported by Savværksejer Jeppe Juhl og hustru Ovita Juhls Mindelegat. V.F. 

was supported by Augustinus Foundation (16-0058). G.K. was supported by Innovationsfonden, 

Denmark (4108-00004B). 

 
All authors declare no conflict of interest. 
 

 

REFERENCES  
Arns, M., Bruder, G., Hegerl, U., Spooner, C., Palmer, D.M., Etkin, A., Fallahpour, K., Gatt, 

J.M., Hirshberg, L., Gordon, E., 2016. EEG alpha asymmetry as a gender-specific 

predictor of outcome to acute treatment with different antidepressant medications in the 

randomized iSPOT-D study. Clin. Neurophysiol. 127, 509–519. 

https://doi.org/10.1016/j.clinph.2015.05.032 

Cheng-Teng Ip et al. 16 



 

 

Bech, P., Boyer, P., Germain, J.M., Padmanabhan, K., Haudiquet, V., Pitrosky, B., Tourian, 

K.A., 2010. HAM-D17 and HAM-D6 sensitivity to change in relation to desvenlafaxine 

dose and baseline depression severity in major depressive disorder. Pharmacopsychiatry. 

https://doi.org/10.1055/s-0030-1263173 

Bech, P., Kajdasz, D.K., Porsdal, V., 2006. Dose-response relationship of duloxetine in placebo-

controlled clinical trials in patients with major depressive disorder. Psychopharmacology 

(Berl). https://doi.org/10.1007/s00213-006-0505-1 

Bech, P., M., L., M., U., 2005. An inventory for the measurement of generalized anxiety distress 

symptoms, the GAD-10 Inventory. Acta Psychiatr Belg 105, 111–118. 

Bente, D., 1976. EEG aspects of waking sleep behaviour and the chronophysiology of 

endogenous depressions. Arzneimittel-Forschung/Drug Res. 

Grzenda, A., Widge, A.S., 2020. Electroencephalographic Biomarkers for Predicting 

Antidepressant Response: New Methods, Old Questions. JAMA Psychiatry. 

https://doi.org/10.1001/jamapsychiatry.2019.3749 

Guenther, T., Schönknecht, P., Becker, G., Olbrich, S., Sander, C., Hesse, S., Meyer, P.M., 

Luthardt, J., Hegerl, U., Sabri, O., 2011. Impact of EEG-vigilance on brain glucose uptake 

measured with [18F]FDG and PET in patients with depressive episode or mild cognitive 

impairment. Neuroimage. https://doi.org/10.1016/j.neuroimage.2011.01.059 

Hegerl, U., Hensch, T., 2014. The vigilance regulation model of affective disorders and ADHD. 

Neurosci. Biobehav. Rev. 44, 45–57. https://doi.org/10.1016/j.neubiorev.2012.10.008 

Hegerl, U., Wilk, K., Olbrich, S., Schoenknecht, P., Sander, C., 2012. Hyperstable regulation of 

vigilance in patients with major depressive disorder. World J. Biol. Psychiatry. 

https://doi.org/10.3109/15622975.2011.579164 

Jawinski, P., Sander, C., Mauche, N., Spada, J., Huang, J., Schmidt, A., Häntzsch, M., Burkhardt, 

R., Scholz, M., Hegerl, U., Hensch, T., 2015. Brain Arousal Regulation in Carriers of 

Bipolar Disorder Risk Alleles. Neuropsychobiology. https://doi.org/10.1159/000437438 

Jödicke, J., Olbrich, S., Sander, C., Minkwitz, J., Chittka, T., Himmerich, H., Hegerl, U., 2013. 

Separation of low-voltage EEG-activity during mental activation from that duringtransition 

to drowsiness. Brain Topogr. https://doi.org/10.1007/s10548-013-0287-9 

Kennis, M., Gerritsen, L., van Dalen, M., Williams, A., Cuijpers, P., Bockting, C., 2020. 

Prospective biomarkers of major depressive disorder: a systematic review and meta-

analysis. Mol. Psychiatry. https://doi.org/10.1038/s41380-019-0585-z 

Köhler-Forsberg, K., Jørgensen, A., Dam, V., Stenbæk, D., Fisher, P., Ip, C.-T., Melanie, G., 

Poulsen, H., Giraldi, A., Ozenne, B., Jørgensen, M., Knudsen, G., Frokjaer, V., 2020. 

Predicting treatment outcome in Major Depressive Disorder using serotonin 4 receptor PET 

brain imaging, functional MRI, cognitive-, EEG-based and peripheral biomarkers: a 

NeuroPharm open label clinical trial protocol. Front. Psychiatry. 

Nutt, D.J., Wilson, S., Paterson, L., 2008. Sleep disorders as core symptoms of depression. 

Dialogues Clin. Neurosci. 

Olbrich, S., Arns, M., 2013. EEG biomarkers in major depressive disorder: Discriminative power 

and prediction of treatment response. Int. Rev. Psychiatry. 

https://doi.org/10.3109/09540261.2013.816269 

Olbrich, S., Conradi, J., 2016. Future of clinical EEG in psychiatric disorders: Shifting the focus 

from diagnosis to the choice of optimal treatment. Clin. Neurophysiol. 

https://doi.org/10.1016/j.clinph.2015.06.018 

Olbrich, S., Fischer, M.M., Sander, C., Hegerl, U., Wirtz, H., Bosse-Henck, A., 2015. Objective 

markers for sleep propensity: Comparison between the Multiple Sleep Latency Test and the  

 

Cheng-Teng Ip et al. 17 



 

Vigilance Algorithm Leipzig. J. Sleep Res. https://doi.org/10.1111/jsr.12290 

Olbrich, S., Mulert, C., Karch, S., Trenner, M., Leicht, G., Pogarell, O., Hegerl, U., 2009. EEG-

vigilance and BOLD effect during simultaneous EEG/fMRI measurement. Neuroimage. 

https://doi.org/10.1016/j.neuroimage.2008.11.014 

Olbrich, S., Sander, C., Minkwitz, J., Chittka, T., Mergl, R., Hegerl, U., Himmerich, H., 2012. 

EEG vigilance regulation patterns and their discriminative power to separate patients with 

major depression from healthy controls. Neuropsychobiology. 

https://doi.org/10.1159/000337000 

Olbrich, S., Tränkner, A., Surova, G., Gevirtz, R., Gordon, E., Hegerl, U., Arns, M., 2016a. CNS- 

and ANS-arousal predict response to antidepressant medication: Findings from the 

randomized iSPOT-D study. J. Psychiatr. Res. 

https://doi.org/10.1016/j.jpsychires.2015.12.001 

Olbrich, S., Tränkner, A., Surova, G., Gevirtz, R., Gordon, E., Hegerl, U., Arns, M., 2016b. 

CNS- and ANS-arousal predict response to antidepressant medication: Findings from the 

randomized iSPOT-D study. J. Psychiatr. Res. 73, 108–115. 

https://doi.org/10.1016/j.jpsychires.2015.12.001 

Østergaard, S.D., Bech, P., Miskowiak, K.W., 2016. Fewer study participants needed to 

demonstrate superior antidepressant efficacy when using the Hamilton melancholia subscale 

(HAM-D6) as outcome measure. J. Affect. Disord. 190, 842–845. 

https://doi.org/10.1016/j.jad.2014.10.047 

Perrin, F., Pernier, J., Bertrand, O., Echallier, J.F., 1989. Spherical splines for scalp potential and 

current density mapping. Electroencephalogr. Clin. Neurophysiol. 72, 184–187. 

https://doi.org/https://doi.org/10.1016/0013-4694(89)90180-6 

Pizzagalli, D.A., Webb, C.A., Dillon, D.G., Tenke, C.E., Kayser, J., Goer, F., Fava, M., McGrath, 

P., Weissman, M., Parsey, R., Adams, P., Trombello, J., Cooper, C., Deldin, P., Oquendo, 

M.A., McInnis, M.G., Carmody, T., Bruder, G., Trivedi, M.H., 2018. Pretreatment rostral 

anterior cingulate cortex theta activity in relation to symptom improvement in depression: A 

randomized clinical trial. JAMA Psychiatry. 

https://doi.org/10.1001/jamapsychiatry.2018.0252 

Rolle, C.E., Fonzo, G.A., Wu, W., Toll, R., Jha, M.K., Cooper, C., Chin-Fatt, C., Pizzagalli, 

D.A., Trombello, J.M., Deckersbach, T., Fava, M., Weissman, M.M., Trivedi, M.H., Etkin, 

A., 2020a. Cortical Connectivity Moderators of Antidepressant vs Placebo Treatment 

Response in Major Depressive Disorder. JAMA Psychiatry. 

https://doi.org/10.1001/jamapsychiatry.2019.3867 

Rolle, C.E., Fonzo, G.A., Wu, W., Toll, R., Jha, M.K., Cooper, C., Chin-Fatt, C., Pizzagalli, 

D.A., Trombello, J.M., Deckersbach, T., Fava, M., Weissman, M.M., Trivedi, M.H., Etkin, 

A., 2020b. Cortical Connectivity Moderators of Antidepressant vs Placebo Treatment 

Response in Major Depressive Disorder: Secondary Analysis of a Randomized Clinical 

Trial. JAMA Psychiatry. https://doi.org/10.1001/jamapsychiatry.2019.3867 

Roth, B., 1961. The clinical and theoretical importance of EEG rhythms corresponding to states 

of lowered vigilance. Electroencephalogr. Clin. Neurophysiol. https://doi.org/10.1016/0013-

4694(61)90008-6 

Santamaria, J., Chiappa, K.H., 1987. The EEG of drowsiness in normal adults. J. Clin. 

Neurophysiol. https://doi.org/10.1097/00004691-198710000-00002 

Schmidt, F.M., Sander, C., Dietz, M.E., Nowak, C., Schröder, T., Mergl, R., Schönknecht, P., 

Himmerich, H., Hegerl, U., 2017. Brain arousal regulation as response predictor for 

antidepressant therapy in major depression. Sci. Rep. https://doi.org/10.1038/srep45187 

 

 

Cheng-Teng Ip et al. 18 

https://doi.org/10.1038/srep45187


 

 

Seifritz, E., 2001. Contribution of sleep physiology to depressive pathophysiology. 

Neuropsychopharmacology. https://doi.org/10.1016/S0893-133X(01)00319-0 

Sheehan, D. V, Lecrubier, Y., Sheehan, K.H., Amorim, P., Janavs, J., Weiller, E., Hergueta, T., 

Baker, R., Dunbar, G.C., 1998. The Mini-International Neuropsychiatric Interview 

(M.I.N.I): The development and validation of a structured diagnostic psychiatric interview 

for DSM-IV and ICD-10. J. Clin. Psychiatry. 

Steiger, A., Pawlowski, M., 2019. Depression and sleep. Int. J. Mol. Sci. 

https://doi.org/10.3390/ijms20030607 

Thase, M.E., 2006. Depression and sleep: Pathophysiology and treatment. Dialogues Clin. 

Neurosci. 

Widge, A.S., Bilge, M.T., Montana, R., Chang, W., Rodriguez, C.I., Deckersbach, T., Carpenter, 

L.L., Kalin, N.H., Nemeroff, C.B., 2018. Electroencephalographic biomarkers for treatment 

response prediction in major depressive illness: A meta-analysis. Am. J. Psychiatry 176, 44–

56. https://doi.org/10.1176/appi.ajp.2018.17121358 

Williams, L.M., Rush, A.J., Koslow, S.H., Wisniewski, S.R., Cooper, N.J., Nemeroff, C.B., 

Schatzberg, A.F., Gordon, E., 2011. International Study to Predict Optimized Treatment for 

Depression (iSPOT-D), a randomized clinical trial: Rationale and protocol. Trials. 

https://doi.org/10.1186/1745-6215-12-4 

Wu, W., Zhang, Y., Jiang, J., Lucas, M. V., Fonzo, G.A., Rolle, C.E., Cooper, C., Chin-Fatt, C., 

Krepel, N., Cornelssen, C.A., Wright, R., Toll, R.T., Trivedi, H.M., Monuszko, K., Caudle, 

T.L., Sarhadi, K., Jha, M.K., Trombello, J.M., Deckersbach, T., Adams, P., McGrath, P.J., 

Weissman, M.M., Fava, M., Pizzagalli, D.A., Arns, M., Trivedi, M.H., Etkin, A., 2020. An 

electroencephalographic signature predicts antidepressant response in major depression. Nat. 

Biotechnol. https://doi.org/10.1038/s41587-019-0397-3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cheng-Teng Ip et al. 19 

https://doi.org/10.1038/s41587-019-0397-3


 

Table and Figure Legends  
Table 1: Sociodemographic characteristics for pretreatment visit and clinical outcome at week 8 according to either NeuroPharm or iSPOT-D criteria 
 

  Pretreatment visit  Clinical outcome at week 8  
      

    NeuroPharm
1 

iSPOT-D 
2 

        

  Healthy controls MDD Remitters Non-responders Responders
4 

Non-responders
4 

 N 35 91 21 15 44 35 

 Sex (M/F) 10/25 25/66 11/10 4/11 16/28 6/29 

 Age (Mean±SD) 29.0±9.7 27.4±8.3 29.4±9.7 25.7±9.3 28.5±8.8 25.5±7.2 

 Education 16.0±1.4 14.9±2.2
3 

15.8±1.3 14.8±2.3 15.2±1.9 14.6±2.5 

 GAD10  22.9±9.7 22.3±8.5 22.1±8.6 23.4±7.9 22.1±10.3 

 Pretreatment  12.4±1.7
1 

11.8±1.6 11.4±1.8 23.0±3.5 22.1±3.0  
HDRS 

 (22.9±3.4
2
)       

 Week 8 HDRS   2.4±1.3 10.1±2.4
5 

7.0±3.3 17.5±4.5
5 

 
Notes: 

1
 HDRS6 scores are shown in both pretreatment and week 8 HDRS6 scores 

2 HDRS17 scores are shown in both pretreatment and week 8 HDRS17 scores
  

3 Healthy controls had a significant higher education score compared to MDD (t (98) = -2.607, p = .011)
  

4 Responders were defined by at least 50% improvement of depressive symptoms assessed by HDRS17 score. HDRS17 scores are shown in both pretreatment and 
week 8 HDRS17 scores

  

5 Between group comparisons showed that remitters had significant lower HDRS6 score at week 8 compared to non-responders (t (34) = -12.71, p < .001); 
responders had significant lower HDRS17 score at week 8 compared to non-responders (t (77) = -11.90, p < .001). No significant was found for other demographic 
characteristics (p values >.05).

  

Abbreviation: GAD10, generalized anxiety disorder-10 score; HDRS, Hamilton Depression Rating Scale. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Cheng-Teng Ip et al. 20 



 

Table 2: EEG-vigilance parameters at pretreatment visit and at week 8 

  Pretreatment visit  Clinical outcome at week 8  
      

    NeuroPharm
1 

iSPOT-D
2 

        

  Healthy controls MDD Remitters Non-responders Responders Non-responders 

 Stage 0 (%, Mean±SD) 13.7±3.3 15.3±2.1 14.2±5.1 22.6±6.0 16.2±3.4 15.3±3.6 

 Stage A1 32.6±5.7 36.3±3.5 36.1±7.7 35.4±9.2 35.2±5.3 37.0±5.7 

 Stage A23 10.1±3.2 14.1±2.0 14.1±3.9 6.1±4.6 13.0±3.3 17.1±3.5 

 Stage B1 34.8±4.4 26.4±2.7 23.2±5.5 23.6±6.6 27.7±3.9 22.0±4.1 

 Stage B23 8.8±2.4 7.8±1.5 12.4±4.8 12.4±5.7 7.9±2.4 8.5±2.6 

 Median vigilance 
4.07±0.15 4.27±0.93 4.24±0.25 4.31±0.30 4.28±0.15 4.30±0.16  

(Mean±SD)        

 Vigilance slope at -0.26±0.43 -0.02±0.50* -0.09±0.39 0.03±0.68 -0.11±0.48 0.13±0.54* 
 
1

st
 recording (Mean±SD)        

 Vigilance slope at -0.01±0.51 0.05±0.43 0.10±0.24 0.16±0.56 0.10±0.38 0.06±0.42 
 
2

nd
 recording (Mean±SD)        

 Notes: * p < .05, age was included as covariate in all models      
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Figure 1: The flowchart of the study design. See the dashed frame for the definition of treatment responses in 

NeuroPharm. Medication-free patients diagnosed with MDD were included and allocated to baseline intervention. 

The treatment responses were measured as percentage change in HDRS6 score from baseline to week 4 or 8 

(ΔHDRS6). Three categorical treatment outcomes were defined: Remitters included patients with ΔHDRS6 > 50% 

at week 4 and < 5 points on the HDRS6 scale at week 8; non-responders included patients with ΔHDRS6 < 25% at 

week 4 and ΔHDRS6 < 50% at week 8 were considered non-responders. Patients who did not fulfill either remitter 

or non-responder criteria were classified as intermediate responders.  
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Figure 2: Mean median vigilance and the corresponding error bar were depicted in the figure. Left panel: Vigilance slope 

between pretreatment MDD patients and healthy controls. Pretreatment MDD patients had less declines on vigilance 

slope compared to healthy controls. Right panel: Responders defined by iSPOT-D criteria had faster declines toward 

sleep stages compared to non-responders in the first recording, but not the second recording.  
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Figure 3: Treatment effects on different vigilance stages on MDD patients. Mean percentage and the corresponding 

error bar were depicted in the figure. After 8 weeks of treatment, MDD patients had a higher percentage of stage B1 

compared to pretreatment visit. Moreover, depressed patients at follow-up showed a normalization effect towards the 

vigilance pattern of healthy controls (HC) at stage B1. 
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Figure 4: Treatment effects on MDD patients with different clinical outcomes at stage B1. Mean percentage and 

the corresponding error bar were depicted in the figure. Patients with good clinical responses 

(remitters/responders) showed a higher percentage of stage B1 after 8 weeks of treatment, whilst, this was not 

found on non-responders and non-remitters. The data of healthy controls (HC) were shown for illustrating the 

normalization effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Cheng-Teng Ip et al. 25



  



 

 

2

5 

/

1

0

/ 

2

0 



 

 



 



 



 

7



 



 



 

 


