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Abstract (English)

Tomographic Reconstruction using Anatomy and Regularization.Title:

This thesis develops a method for reconstructing images in emission tomography.
Rooted in user requirements, it is decided to go forward with Tikhonov regular-
ization followed by post-filtering with a Gaussian kernel. This is followed by an
analysis of the theoretical loss of performance implied by linear methods.

After this, the focus switches to development of algorithms for large-scale SVD-
problems and regularized solutions of linear systems. This culminates in a tool-
box for MATLAB

, BBTools, which implements these algorithms in a familiar and
practical setting.

Finally, we show the advantages of the method by comparing several images re-
constructed using both the new and a classical algorithm. We also show that
anatomical structures can be incorporated by means of restrictions.

Resumé (Danish)

Tomografisk rekonstrution med brug af anatomi og regularisering.Titel:

Denne afhandling udvikler en metode til rekonstruktion af billeder inden for emis-
sionstomografi. Med udgangspunkt i brugerkrav besluttes det at fortsætte med
Tikhonov regularisering efterfulgt af en filtrering med en Gausskerne. Dette
følges op med en analyse af de teoretiske ulemper ved lineære metoder.

Herefter skifter fokus til at udvikle algoritmer, der kan håndtere beregninger af
store SVD-problemer og bestemme regulariserede løsninger af lineære systemer.
Dette kulminerer i en pakke til MATLAB

, BBTools, der implementerer disse al-
goritmer i et velkendt og anvendeligt miljø.

Endeligt demonstreres fordelene ved den nye metode ved at sammenligne et antal
billeder, der er rekonstrueret med både den nye metode og en klassisk metode.
Det vises at anatomiske strukturer kan respekteres gennem restriktioner.
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This thesis was prepared at the Neurobiology Research Unit (NRU), Copenhagen
University Hospital, and Informatics and Mathematical Modeling (IMM), Techni-
cal University of Denmark, in partial fulfillment of the requirements for acquiring
the PhD degree in engineering.

The aim of the work is to improve the quality of the images produced in emis-
sion tomography, i.e. PET (Positron Emission Tomography) and SPECT (Single
Photon Emission Computed Tomography). Improved image quality would have
wide-spread diagnostic applications, both in medical research and clinically. For
instance, better images would facilitate diagnosis of cancer, Alzheimer’s disease
and its early stage known as MCI (mild cognitive impairment), epilepsy, and many
others.

In medicine, almost all images are produced using one of two algorithms: Filtered
Back-Projection (FBP) or Expectation Maximization (EM). They have been used
for many years, although relatively primitive.

Many technologically oriented minds have stumbled upon this fact. I am by no
means the first to have attempted to make a better solution; indeed it appears to be
a frequently presented topic for a PhD work. Many of these projects have success-
fully shown that they can produce better images than either of the two classical
methods.

So why do images continue to be produced using these two algorithms?

One major reason is that medical usage have a number of requirements that are
difficult, or impossible, to quantify. These requirements tends to be ignored, be-
cause it is discouraging to be unable to measure whether a progress really has
been made.

If the success of a method is measured by the number of doctors using a new
method after, say, 10 years, then the goals to be pursued changes radically. One
example is backwards compatibility, i.e. the ability to imitate the previous meth-
ods. So far only the EM algorithm have been able to overcome this obstacle.
Unlike previous projects, I have devoted a chapter to describe these requirements.

This project is an attempt to make evolutionary, rather than revolutionary, progress
in image formation. There are a number of reasons that made me believe I could
succeed when I started this PhD.

• When I started it seemed easy to improve on the current methods. This wasIgnorance

only true because I was naive and unaware of prior art.

• The method chosen for the computational work is a text-book solution usedWrong assumptions

in many scientific fields. I therefore assumed that off-the-shelf software
was available to tackle the problem. As it turned out, this was not the case
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and, consequently, an excessive fraction of my time as a PhD student had
to be devoted to software development.

• The power of computers increases at a breath-taking pace. A problem asComputational
power important as the one addressed in this thesis, which relies heavily on com-

putations, should continuously try to take advantage of this.

• As an engineer, I have been trained to seek solutions that will work for theEngineering spirit

intended user. This is, in my opinion, the weakest point in most previous
work and the real reason why many previous attempts to improve currently
used methods have failed to be adopted clinically.

• I have spent a great deal of time at NRU listening to doctors who use theUser knowledge

images. Even though they are top researchers in their fields, hence willing
to adopt new methods faster than most medical staff, they have comparable
needs.
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Chapter

1 Introduction
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This chapter outlines the contents of the thesis, and establishes basic concepts and
typographic conventions.

1.1 Tomographic reconstruction

In Greekπρo (pro) means “before” andπαιδεύειν (paideuein) means “to teach”,
so propaedeutic means a preparatory study. By using this word I hope to maximize
the chance of getting the readers attention.

The material covered in this chapter is assumed knowledge throughout the thesis.
As a motivation for reading the chapter, it explains how to identify chapters and
sections you may skip without missing too much of the bigger picture.

The wordτ óµoσ (tomos) is Greek and means a slice or a cut andγραφô (grapĥo)
means a drawing. Thus tomography is the science of drawing slices. By making
many cuts through an object, a 3D description of the target can be obtained.

Of course the cuts needs to be retrieved without actually doing cutting, when weReconstruction

are dealing with medical imaging. Instead we make indirect measurements of
some function of interest and tries to “reconstruct” the original function. What
is recorded and how it needs to be reconstructed depends on the physical process
involved.

1.2 Thesis outline

One fact can not be hidden and we may as well get it settled right away. This
project was made by an engineer and the text will unavoidably have a certain per-
spective. However, the intended readership includes doctors and others without
extensive formal mathematical training.

The problem is clear: parts of the thesis make heavy use of math to accomplish
an objective which is (hopefully) interesting to users who will be unable to read
it. I have done my best to encapsulate the mathematics in separate chapters, and
make non-technical chapters explaining the rationale independent of these.

A disadvantage of this approach is that it sometimes breaks a natural flow, and oc-
casionally requires forward references. I decided that overall this was preferable
to the alternatives.

The thesis is divided into the following parts.

Propaedeutic

The remaining chapters in this part describes the scanner physics (chapter 2), thePart I

data they produce (chapter 3), and the classical reconstruction algorithms (chap-
ter 4).
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4 Introduction

Improved reconstruction

First we describe the constraints faced by an improved reconstruction method, andPart II

the two main reconstruction strategies (chapter 5). Based on the requirements, we
select the method to be pursued, and settle on a strategy for including anatomy.

This is followed by chapter 6, which contains a technical argument for the com-
petitiveness of the selected method compared with a large class of algorithms.

Numerical algorithms

This part is technical, and derives the algorithms that performs the actual recon-Part III

struction. It gives an iterative framework for Krylov algorithms (chapter 7), ul-
timately leading to the Numerical Partial SVD (NPSVD). It is shown how this
can be used for large-scale SVD computations (chapter 8) and solving large-scale
linear systems with and without regularization (chapter 9). Finally, we describe
the toolbox BBTools (chapter 10), which contains efficient implementations of
these algorithms.

Results

Chapter 11 starts by showing that the new algorithm can reproduce the resultsPart IV

from the Filtered Back-Projection algorithm. We then show that it may also be
used to create images with higher resolution at the same noise suppression, and
that any reconstruction in between these two extremes can be achieved in real-
time by the operator.

Furthermore, we show that anatomical restrictions can be incorporated directly
into the reconstruction. This can be accomplished in a way where the operator is
fully in control of the process.

We follow up with a conclusion in chapter 11.4.

1.3 On the writing style

As recommended by John Kirkman [41], most of the thesis is written in an ac-
tive first-person style, to the extent allowed by my ability on English. Most of
the thesis in in plural, and singular is reserved mainly for personal observations,
opinions, and decisions about the text itself.

In order to maintain a high level of readability, I have tried to maintain a con-
sistent notation throughout the report, as defined in the nomenclature on p. 171.
To further enhance the reader’s focus on the contents rather than the text, I hope
that the typographical quality provided by the typesetting package LATEX will keep
such annoyances at a minimum.

1.4 Coordinates and directions

The coordinates of interest in this thesis are defined with respect to the scanner.
Usually a patient rests on the back and is looking upwards, and the spine is thought
of as the “human axis” and is defined as the z-axis, with the positive directions
going from the feet to the head. The y-axis goes upwards and x-axis is positive in
the left direction as seen from the patient.
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Unfortunately, the coordinate system resulting from this definition is left-handed,
going against deeply grown habits in the engineering/mathematical community.
However, using a right-handed system would be just as confusing for the medical
society, and thus the definitions above are adopted.

The terms left and right are always relative to the person in the scanner.

Planes

There are several ways to define planes anatomically, and these may in turn be
used to establish a coordinate system [79]. Some are defined with respect to cra-
nial features and others are based on anatomical landmarks. For this thesis we do
not need the precise definitions, and the meaning of the following terms can be
given roughly:

• Sagittal: yz-plane. These are planes parallel to themedianplane, which
seperates the two hemispheres of the brain. This coresponds to seing the
person from the side.

• Transverse/transaxial: xy-plane. The transverse planes are horizontal for
a person standing up. A transaxial plane is like looking at a person from
above.

• Coronal: xz-plane. Orthogonal to the two other planes and corresponds to
looking at a person from behind.

In radiological practice the brain is often tilted in order to record the whole brain
with a fewer number of slices. We will not distinguish between the differences in
this thesis.

1.5 Linear algebra∫∫∫
Sections, marked like this one, contains mathematical derivations. It is used in
general chapters as a signal to people who prefer to skip the mathematical parts.
Chapters full of mathematics can be identified from the introduction.

The thesis assumes a basic knowledge of linear algebra and numerical algorithms.
Nonetheless, different sources use slightly different notation and definitions. Al-
though most notation is introduced the first time it is used, the nomenclature given
in the back, starting on page 171, should settle such ambiguities.

In any case, the most important rules are given here:

• Matrices are written in uppercase roman bold, e.g.A.

• All vectors are columns. They are printed in lowercase roman bold, e.g.x.

• We occasionally use the term “A is orthogonal” as a short-hand for “A has
orthonormal columns”.

• The Hermitian of an operator,A, is the Hermitian adjoint operator ofA.
If A is a matrix, the Hermitian is the transpose-conjugate ofA, i.e. AH.
Thus, the Hermitian of an operator is not to the same as saying thatA is
Hermitian or self-adjoint (which, for matrices, say thatA = AH).



i
i

i
i

i
i

i
i
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If a matrix is “small” it it with respect to the dimensions. Other interpretations
will always be specified such as “A is small in norm” or‖A‖ is small.

When a key-equation is derived or defined, it will either be encapsulated in a box
or be given a name (or both). I hope the burden of reading is lightened when an
equation is referred to by name rather than merely by a number such as eq. (7.12).

1.6 Software and programs
001010
100001
111100

The following quote is attributed to folklore in [14]:

The difference between theory and practice is smaller in theory than
it is in practice.

Almost all the theory in the thesis has been fleshed out as working computer
programs written in MATLAB

, which is a convenient language for numerical al-
gorithms. This is particularly true in linear algebra which forms the back-bone
of this thesis. They have been collected in a toolbox, BBTools [33], which is
described in chapter 10, and is available under the GNU General Public License
(GPL) as published by the Free Software Foundation [24].

Several examples in the text assumes that the BBTools is installed. This allows
much of the code to be expressed in a form where the algorithms are undistorted
by the algorithmic details of the underlying linear function.

Sections mainly concerned with computer implementations are marked as this
one. I personally prefer texts that put mathematical derivations into usage at the
earliest possible opportunity, but I realize that this view is not universal.

Programming sections may include code or details that may appear inappropri-
ate for those who are more mathematically oriented. Persons who feel that way
should easily be able to skip these sections, possibly leaving them for a second
reading.

1.7 Literate programming
001010
100001
111100

When it comes to algorithms this thesis differ from most texts. To put it in a nut-
shell: the algorithms in this thesis works. If the reader can not get an algorithm to
work, it must be because the author made a bug. This is in contrast to the use of
pseudo-code where it could be a misunderstanding from the reader. It should also
be a comfort to know that the author actually ran each algorithm.

Although this approach makes the algorithms more verbose than pseudo-code, it
does have the advantage of telling the truth, the whole truth and nothing but the
truth. Most people who have tried to implement a program from pseudo-code
should appreciate this quality.

Nevertheless, most source-code is sadly quite undocumented. Most examples in
this thesis takes its onset on literate programming, as described by its inventor
Donald Ervin Knuth [42]:
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Let us change our traditional attitude to the construction of pro-
grams: Instead of imagining that our main task is to instruct acom-
puter what to do, let us concentrate rather on explaining tohuman
beingswhat we want a computer to do.

Unfortunately, the existing tools for literate programming are little but advanced
pretty-printers. In particular, line-comments are not supported well. The value of
good line-comments are evident from a quick glance at respected codes such as
[58].

As a result, the code presented in the thesis was produced by a custom set of tools.
The most important feature is that scopes has been replaced with connector-lines.
The idea is that everything inside a scope shares a common line on the left, except
for out-dented expressions. Apart from that, the most important feature is that any
identifier can be replaced with an arbitrary command. Thus it is possible to match
the notation in the program with the remaining parts of the thesis.

In MATLAB
-scripts (see alg. 1.1) every closing scope can be replaced by anend

except for functions where nothing should be inserted. The branching construct
shows the scoping rules. Since the wholeif -line is an out-dented expression, it
should be considered to be in the scope of the whole function. The same argu-
ment goes for theelse-statement but not the assignment on the same line.

Efficiency

Examples included in the thesis are meant to be illustrative, not efficient. Op-
erations may be repeated, zero by construction, or never used. In particular,
language-dependent optimizations are intentionally avoided, although they often
have tremendous impact in speed. Examples include preallocating matrices and
reformulations such asAHx → (xHA)H andA−1x → A\x.

For efficient code, please consult the code in BBTools [33].

1.8 Numerical notation

In order to analyze numerical algorithms, we need some notation. As most texts
dealing with rounding errors in floating point arithmetics, we assume there is a
constant,εM , so thata } b = (a ◦ b)(1 + η) where|η| ≤ εM . Here◦ is one
of the basic arithmetic functions addition, subtraction, multiplication, division, or
square root.

Algorithm 1.1: Example of MATLAB
-script

A nonsense demonstration showing how a MATLAB
-script is typeset in the thesis.

The source is not shown in actual programs. The end that closes the if -structure
is not shown since it collapses into an end-scope symbol.

H function a = format demo(A) Source Demonstrates

x1 = A(:, end); x1=A(:,end); Vector and matrix

β = ‖A‖2 ; beta=norm(A); Scalar, matrix and standard function

H if β > length(x1) if beta>length(x1) Start of scope

a = length(x1); a=length(x1); Normal identifier

else, a = β; else, a=beta; Outdenting and multiple commands
J J
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The constantεM is known asmachine precisionor machine epsilon. The relation
is only valid as long as the result stays within the range of the arithmetic. While
we may occasionally consider underflow (e.g. results flushed to zero or quantized
to lower accuracy), it will generally be assumed that overflow does not occur.

For completeness it is usually mentioned that a few old computers (like the Cray
C90 [15]) does not satisfy the relation for addition and subtraction. Such ma-
chines will be ignored, and we note that common software such as MATLAB

have
abandoned such machines.

For linear algebra it is practical to have some bounds on a higher level. Specifi-
cally, we will consider the precision of an inner product of two vectors of lengthl.
It can be proved (barring overflow and underflow) that accumulating the sum is
stable, and computes the sum of the elements perturbed by a relative error smaller
thanνl = lεM/(1− lεM ) ≈ lεM , wherel is the number of entries added1 [69].

1To account for the multiplication, we need to multiply this byεM (1 + εM ) in the real case.
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Here the basic principles behind the scanners are introduced. We show example
images from each scanner type, and explain the physics behind the CT, PET, and
SPECT scanners. The MR scanner is only mentioned briefly, as the principles
differ significantly from the others.

This chapter serves as a primer for those who wants to understand the principles
behind the scanners. It may also be beneficial for people who just want to know a
bit about medical scanners in general.

2.1 Scanners and their abbreviations

There are 4 kinds of tomographic scanners used in medical applications that are
capable of imaging any part of the body. They are all identified by abbreviations
as given in table 2.1. Some synonyms found in the literature are given in ta-
ble 2.2, but they will not be used further in this thesis. For completeness it should
be mentioned that other methods exist, with ultra-sound probably being the most
well-known.

Acronym Meaning Type
CT Computer Tomography Transmission
PET Positron Emission Tomography Emission
SPECT Single Photon Emission Computerized Emission

Tomography
MR Magnetic Resonance Magnetic

Table 2.1:
Acronyms for scan-
ners and modalities
used throughout
the thesis.

The first scanner to emerge was the CT-scanner invented independently by Allan
MacLeod Cormack and Sir Godfrey Newbold Hounsfield who shared the 1979
“Nobel Prize in Physiology or Medicine”. It is based on x-rays but instead of
taking a single 2D photo, a large number of images are taken from different an-
gles. These are then fed into a computer (hence the name) and the final images
generated as explained in sec. 2.3. Since the x-rays are sent through the object, a
CT-scan is known as a transmission scan.

This is in contrast to PET and SPECT, where a small dose of a radioactive sub-
stance is administered to the subject. Common examples are injections of water
with a radioactive isotope of oxygen atom or inhalation of radioactive xenon.

Acronym Meaning Explanation
CAT Computer Aided Tomography Same as CT

or Computerized Axial Tomography
ECAT Emission CAT Both PET & SPECT
MRI Magnetic Resonance Imaging Same as MR
NMR Nuclear Magnetic Resonance Same as MR
SPET Single Photon Emission Tomography Same as SPECT

Table 2.2:
Other acronyms
found in the liter-
ature. These will
not be used in this
thesis.
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When the radioactive atom decays a photon (in SPECT) or a positron (in PET) is
expelled. In both cases the scanner tracks the direction of the decay, ultimately
leading to a map of the concentration of the administered drug. Since both meth-
ods rely on emission from the substance itself, the methods are known as emission
tomography.

Finally MR uses a completely different principle. An MR-scanner exploit that
a nucleus in a magnetic field precesses around an axis. This precession can be
manipulated with radio-waves, allowing different characteristics of the nucleus to
be determined. In medical MR it is primarily protons (i.e. hydrogen) that are in
play, and characteristics such as proton density can give very detailed anatomical
information.

The importance of MR in this thesis is that its high resolution provide anatomical
information that is useful for improving the resolution in PET and SPECT.

Image gallery

The best way to get acquainted with the different scanner types is probably to see
some images, as they usually come out of the scanners. Fig. 2.2 to 2.5 display
sample images from all the scanners discussed above. This shows the relative
strength and weaknesses of the scanners, and can safely be skipped by those who
are already familiar with such images.

2.2 Resolution

Before discussing the scanners, we need a precise definition of resolution. As
shown in the image gallery, the scanners produce images that are blurred versions
of the function we would really like to measure.

In medicine, the resolution is usually quantified by measuring the Full-Width at
Half Maximum (FWHM). This concept is associated with a Point Spread Func-
tion (PSF), which is the function measured of a point-source. Ideally, this would
be a sharp spike, but in practice it is a function with a peak at the point-source that
gradually tapers off.

The importance of the FWHM illustrated in fig. 2.1. Since the PSF are, by defini-
tion, 1/2 of the peaks at the intersection point, the sum at this point is the average
of the peaks. If the PSFs are monotonously decreasing, two peaks of equal in-
tensity more than one FWHM apart will result in two crests separated by a cleft.

−1 −0.5 0 0.5 1
0

0.5

1

1.5
PSFs separated by one FWHM

← FWHM →

Figure 2.1:
If the PSF
decreases
monotonously,
then two equally
intense peaks can
be distinguished
when they are sep-
arated by more than
one FWHM.

This definition generalizes to any dimension. Generally, the FWHM is either
measured as the longest distance or, if it as an ellipse, the major and minor axes
are given separately.
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(a) Sagittal CT-image of a normal person. (b) Transaxial slice of the same person.

Figure 2.2:
Example CT im-
ages. CT offer
the best resolution
of the ordinary
scanners, but does
not have a good
contrast in brain
tissue.

(a) Sagittal MR-image of a normal person. (b) Transaxial slice of the same person.

Figure 2.3:
Example MR im-
ages. MR and CT
are the primary
means for identi-
fying anatomical
structures in the
brain.

(a) Transaxial cut of an altanserin scanning.
(Altanserin images a serotonin receptor.)

(b) Another cut, corresponding roughly to
fig. 2.3(b)

Figure 2.4:
Example of images
produced with PET
on the same person
as in fig. 2.3. PET
is a difficult tech-
nique, and requires
a facility with a
large staff of physi-
cists and chemists
in addition to the
medical staff.
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(a) Normal person (age 68) scanned using
HMPAO (images blood flow).

(b) Normal person scanned with PE2I. (PE2I
images the dopamine transporter.)

(c) Baseline HMPAO image of a patient with
epilepsy.

(d) Same person injected during a seizure.

Figure 2.5:
Transaxial images
produced using
SPECT. The poor
resolution limits
the utility of the
technique.

2.3 The CT scanner

Transmission tomography investigates a semi-transparent object by sending radi-
ation through it from a number of angles as sketched in fig. 2.6. The projections
are then fed to a computer and the amount of absorption is reconstructed. In
medical imaging the relevant radiation is x-rays orγ-radiation. In the case of x-
rays the scanning is called a CT-scan as an initialism (i.e. an unpronounceable
abbreviation) for Computer Tomography. The term transmission scan is broader,
and includesγ-radiation.

The CT-scanner is not only important in itself but also in emission tomography.
First, emission tomography resembles transmission tomography from a technical
point of view. Second, a transmission scan is often performed in addition to an
emission scan in order to correct for attenuation of the radioactive tracer. Finally,
the higher resolution of a CT-scan can be used to identify anatomical structures
which can be used to interpret the emission scan or even improve it.

2.4 Attenuation∫∫∫
As the x-ray traverses through an object, the ray is attenuated according to the
tissue-type. The simple example in fig. 2.6 only has two types, but in general
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CT principle

(a) Transmission from one angle.

CT principle

(b) A slightly different angle.
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(c) The measured intensity profile.
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(d) Profile from the other angle.

Figure 2.6:
Principle of a mod-
ern CT-scanner.
An x-ray source
in the periphery of
the scanner ring is
rotated around the
center. Each posi-
tion of the source
gives a projection
as illustrated.

it can have many different values. Physics tells us that the intensity through a
homogeneous absorbing substance can be written as follows:

(2.1) f(x) = I0e
−µx

Herex is the length through the medium,µ depends on the material, andI0 is the
intensity of the incoming beam.

The coefficientµ is known as thelinear attenuation coefficient, and it depends on
the substance as well as the energy of the photons (i.e. the wavelength) and has
dimension of1/length (1/m in SI-units). Most tables do not listµ directly but
rather themass attenuation coefficientµ/ρ whereρ is the density (usually given
in g/cm3).

Some typical values for relevant energies are found in table 2.3. It can be seen
that the main difference between the absorption is due to differences in the tissue
density. In neurological studies bone is the only tissue with a density that dif-
fers significantly from water. Therefore CT is not usually the method of choice
for retrieving anatomical information about brain tissue, except when a contrast
agent1 is used. However, the access to MR scans are limited and CT provides
valuable information in many cases, and is an excellent technique for identifying
intracranial bleeding.

When the attenuation is a function of position, the line must be split up in small
segments. For simplicity we let the segments be distributed equidistantly with
spacing∆x. This givesf(x) = I0e

−∆xµ(x0)e−∆xµ(x1) · · · e−∆xµ(xN ) or simply
f(x) = I0e

−(∆xµ(x0)+···+∆xµ(xN ). In the limit of an infinite number of segments
this becomesf(x) = I0e

−
∫ x
0 µ(x)dx.

This means that the measured profiles in fig. 2.6(c) and 2.6(d) contains informa-
tion about the line-integrals of the attenuation-map since

∫ x

0
µ(x)dx = ln

(
−

1A contrast agent is a substance with an attenuation that differs significantly from the area of
interest. This property makes it visible in the CT scan.



i
i

i
i

i
i

i
i

14 Scanner instrumentation

Tissue Density (ρ) Photon MAC (µ/ρ) LAC ( µ) Absorption
g/cm3 keV cm2/g cm−1 % pr. cm

Bone 1.92 500 0.090 0.173 16
100 0.186 0.356 30
50 0.424 0.814 56

Water 1.00 500 0.097 0.097 9
100 0.171 0.171 16
50 0.227 0.227 20

Blood 1.06 500 0.096 0.102 10
100 0.170 0.180 16
50 0.228 0.241 21

Brain† 1.04 500 0.096 0.100 10
100 0.170 0.177 16
50 0.228 0.237 21

† Brain includes both gray- and white-matter as they are virtually indistinguishable.

Table 2.3:
Absorption in dif-
ferent tissues. The
mass attenuation
coefficient (MAC)
and nominal den-
sities (from [36])
are used to get
the linear attenu-
ation coefficient
(LAC). The last
column gives the
absorption through
one cm of tissue.
Typical photon
energies are 70–
80 keV or lower for
CT, 100–150 keV
for SPECT, and
511 keV for PET.

f(x)/I0

)
. In the general case,x represents the position on the line inside the

volume.

In fig. 2.6 each point on the graph represents such line integral. In this simple
example theµ-function is either zero or a constant, say,c. Thus the logarithm of
the measurement will be−c times the length that the line intersects the object.

Theµ-function is sometimes called aµ-map. The CT-images are slices computed
from these projections, usually trans-axial e.g. planes parallel to the floor when
standing. The procedure for doing this will be explained in chapter 4.

2.5 The SPECT scanner

The SPECT-scanner is an emission tomographic scanner, i.e. the scanned object
must itself be radiating. This allows the scanner to track a radioactive substance
within the patient.

The principle of a basic SPECT-scanner is depicted in fig. 2.7. Much as the CT-
scanner, the SPECT-scanner measures the radiation from a number of directions.
However, since the object is radiating in all directions simultaneously, theγ-rays
must be limited prior to the measurements. Also, most SPECT-scanners are multi-
head scanners, i.e. there are two or moreγ-cameras rotating simultaneously.

For completeness, we list a couple of tracers used in SPECT-studies in tab. 2.4.
One noteworthy observation is that the half-lives of the tracers are sufficiently
long that they can generally be created and transported from another site, e.g. a
commercial vendor.

Most tracers used clinically are based on technetium (99Tc), which is produced
by decaying molybdenum (99Mo). The half-life of99Mo is about66 h, and can
typically produce99Tc for about a week. The tracer is labeled with the technetium
using a standard kit, making SPECT relatively inexpensive.

Collimators

To get directional information from the beams, they are limited by a device known
as a collimator. A collimator consists of a number of pipes (usually of lead), and
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SPECT principle

(a) Transmission from one angle.

SPECT principle

(b) A slightly different angle.
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(c) The measured intensity profile.
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(d) Profile from the other angle.

Figure 2.7:
Principle of a basic
SPECT-scanner
with a single head
and a parallel-hole
collimator. The
activity of a ra-
diating object is
measured by a
γ-camera. A col-
limator, placed in
front of the camera,
limits the radiation
to beams normal
to the surface. The
camera is rotated
around to object
to produce mea-
surements from a
number of direc-
tions.

Isotope Half-life Tracer Use
99Tc 6.0 h HMPAO† Blood flow

133Xe 5.2 d Xenon Blood flow
123I 13.2 h PE2I Receptor studies

ADAM Receptor studies
† HMPAO (Hexa-Methyl-Propylene Amine Oxime) is a lipophilic tracer used to
diagnose e.g. strokes and dementia. PE2I, a cocaine derivative, is used to study
dopamine transporters, while ADAM is used to study serotonine transporters.

Table 2.4:
Examples of iso-
topes and tracers
used in SPECT-
studies.

a beam is only allowed to pass through when it is aligned with the tube. The scan-
ner depicted in fig. 2.7 is a parallel-hole collimator, but many other geometries are
possible.

A fan-beam collimator has all tubes directed towards a line parallel to the scan-
ner z-axis. Thus, all trans-axial cuts through the collimator will have the same
structure. A cone-beam collimator has tubes all directed at a single point in space.
Finally, a pin-hole collimator consists of a single hole, much like a pin-hole cam-
era.

The collimator acts as a filter and blocks the majority ofγ-rays. Therefore, the
collimator chosen for a task must be a trade-off between sensitivity (how manyγ-
rays are blocked) and resolution (how closely the beam is aligned with the pipes).
Typical examples of the pipe dimensions of low-energy high-resolution and ultra-
high-resolution collimators are given in tab. 2.5.

Name Geometry Hole Hole Thickness Focal length
size length
mm mm mm mm

LEHR-PAR Parallel 1.22 27.0 0.20 ∞
LEUHR-PAR Parallel 1.78 58.4 0.15 ∞
LEHR-FAN Fan-beam 1.40 25.4 0.18 500
LEUHR-FAN Fan-beam 1.40 34.9 0.15 500

Table 2.5:
Examples of com-
mercial collimators
for the Philips (for-
merly Marconi)
IRIX-scanner. (Pri-
vate communica-
tions.)
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Although SPECT does not have a theoretical lower resolution limit, the collimator
introduces severe practical limits. First, to obtain a sensitivity which is useful in
medical applications, it is necessary to allow beams that diverge from the ideal.
Also, the thickness of the tubes are limited, allowing some photons to be reflected
or penetrate the tube. In practice, the resolution of a SPECT-scanner is limited to
about8 mm in typical clinical studies.

These effects are minimal for a pin-hole collimator. However, to compensate for
the poor sensitivity of such a collimator, it is usually necessary to inject a very
high dose of radioactivity for a complete brain-scan. Normally, the high dose of
radioactivity will kill the subject, which limits the utility to animal studies. The
resolution, however, is excellent.

SPECT imperfections

There are a number of imperfections that limits the resolution of SPECT. First,
the attenuation discussed in sec. 2.4 is equally valid for SPECT. However, where
the CT-scanner is used to measure the attenuation, it is a nuisance in SPECT we
would rather have been without.

Typically, the energies in SPECT are higher than in CT. As can be seen in tab. 2.3,
the attenuation becomes less problematic for the higher photon energies. Further-
more, the difference between the mass attenuation coefficient for bone and water
decreases radpidly in the energy-range100–120 keV.

Secondly, some of the “attenuated” photons are not absorbed, but scattered in new
directions. This comes at a loss of energy, which depends on the deflection angle.
This effect can, to some extent, be disregarded by only considering photons in a
certain energy window.

There are many other imperfections in SPECT, but it is beyond the scope of this
thesis to explain them in detail. We refer the interested reader to the references in
sec. 2.9.

2.6 The PET scanner

Like SPECT, PET is an emission tomographic technique. However, the PET-
scanner is based on radioactive isotopes that has aβ+ decay, i.e. emits a positron.
Shortly after emission, the positron annihilates with an electron and they are both
converted into pure energy in the form ofγ-radiation. As it is impossible to con-
serve both energy and momentum with a single photon, the energy is converted
into twoγ-quanta of (nearly) opposite direction as sketched in fig. 2.8.

PET principle

•
Positron

•
Anihilation

•

•

γ
1

γ
2

Detection

Detection

Figure 2.8:
The basic principle
of a PET-scanner.
The ligand emits
a positron, which
quickly annihilates
into two 511 keV
γ-photons of oppo-
site directions.
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The PET-scanner consists of rings of scintillation crystals, and the line of response
(LOR) of the annihilation is determined by the pair of crystals that detects the
emission nearly simultaneously. This eliminates the need for a collimator, which
makes PET far more sensitive then SPECT.

Because of theβ+-decay, most isotopes has a relatively short life as shown in
table 2.6. This is both an advantage and a problem. It is a problem because the
isotopes has to be produced the place they are used. It is difficult to build the
isotope into the tracer, test the purity and administering the drug during the short
time available. One advantage is that the substance is quickly removed which
reduces the dose absorbed by the subject and allows consecutive scans.

Isotope Half-life Substance Use
15O 2 m Oxygen Oxygen metabolism

Carbon monoxide Blood volume
Water Blood flow

11C 20 m Flumazenil Receptor studies
Raclopride Receptor studies

18F 110 m FDG† Glucose metabolism
Altanserin Receptor studies

13N 10 m Ammonia Cardiac blood flow
† FDG (Fluoro-Deoxy-Glucose) is a sugar used for activation studies and cancer
treatment (i.e. oncology).

Table 2.6:
Isotopes and exam-
ple of tracers used
in PET-studies.

PET imperfections

As in SPECT, there are a large number of non-ideal effects that ultimately limits
the resolution in PET. It is beyond the scope of this thesis to go into details with
most of them, but we briefly discuss a few with practical consequences.

Physical limitations

There are several unavoidable physical effects that limits the resolution of a PET-
scanner. First, the positron usually contains a residual momentum when it an-
nihilates with the electron. Since momentum is conserved, the result is that the
two beams are not completely collinear. This effect depends on the speed of the
emitted positron, which depends on the tracer used in the study.

Secondly, there is a distance from the emission of the positron to the anihila-
tion. This is called the “positron range”, and depends on the speed of the emitted
positron and the nature of the surrounding tissue. This is further discussed in
sec. 2.7.

Thirdly, attenuation and scatter have much the same effect on PET as it has on
SPECT. However, if one of the photons is scattered, the measured line may not be
inside the object. This makes scatter more severe for PET than it is for SPECT.
As in SPECT, most (but not all) of the scattered photons can be identified by
measuring the energy-loss by the photon.

Equipment limitations

The scintillation crystals in the PET-scanner converts the511 keV γ-rays to lower
energies which can be detected using conventional electronics. Each crystal is
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used to detect emissions that occurs on all the lines that intersects it. This is
unlike SPECT where the crystal residing under a collimator tube only detects
photons from (approximately) one direction.

This greatly increase the sensitivity of PET compared to SPECT. However, a crys-
tal has a dead-time after measuring a photon where it returns to equillibrium and
is unable to detect new events. This is a physical effect, and is not merely limited
by the electronic circuits. The result is that the number of detected events is a
non-linear function of the actual number of photons emitted on a line.

Most algorithms used to form images depends on the linearity of the response.
The dead-time makes it necessary to correct the measurements before further pro-
cessing. Fortunately, this is standard on modern PET-scanners.

Randoms

Finally, we mention randoms which may be measured if two emissions occur at
nearly the same time. If two of the four photons are absorbed, the measured LOR
may be completely unrelated to the object.

The standard way to correct for randoms is to measure and subtract known ran-
doms. These can be identified when two emissions are detected with a time-
interval that is too large to be emitted from a point inside the scanner. Thus, there
is a window of “acceptance” where counts are included, followed by a window
of “randoms” of the same duration. When a random is detected, it is subtracted
instead of added. This technique is known as on-line subtraction.

This arrangement is special because it allows “negative counts”. On the average,
the measured number will be correct, but the existence of negative counts have
implications for some algorithms. In principle, the “trues” and “randoms” can be
measured independently, but not all PET-scanners support this.

2.7 Intrinsic resolution in PET∫∫∫
Unlike SPECT, the positron range and non-collinearity puts a fundamental limit
to the resolution of PET. The size of the scintillation crystals and other non-ideal
properties of the PET-scanner further limits the resolution.

The positron range depends on the isotope, with some examples given in table 2.7.
Herer is the FWHM-equivalent of the standard deviation and can thus be com-
bined with other factors.

Isotope 18F 11C 68Ga
FWHM [mm] 0.13 0.13 0.31
FW(0.1)M [mm] 0.38 0.39 1.60
r [mm] 0.54 0.92 2.80

Table 2.7:
Isotopes and typi-
cal ranges [16].

The effect arising from non-collinearity depends on the diameter of the detector-
ring,D, and at the center it is given roughly by.0022D. Even if technology could
allow perfect detection, the intrinsic resolution of a PET-scanner would still be
limited to R = 1.25

√
r2 + (.0022D)2 [16]. For a dedicated brain-scanner this

could be less than1 mm for 18F-images.

Practical scanners must have crystals of finite width,d, and there may be a sig-
nificant coupling between crystals which also limits the resolution. In this case
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the range is approximately given byR = 1.25
√

(d/2)2 + r2 + (.0022D)2 + b2,
whered is the crystal width andb is the coupling. Tomographs with a photo-
multiplier tube (PMT) for each crystal typical haveb < .3 mm, but for economic
reasons crystals2 often share PMTs. This usually limits coupling tob ≈ 2 mm.

Thus the achievable resolution of modern scanners useful for brain-scanning is
around4–6 mm, and2 mm is a reasonable estimate of the best resolution that can
be achieved with current technology.

2.8 2D and 3D acquisitions

So far we only discussed how a transaxial slice is acquired. In order to produce
a 3D volume, a number of slices are measured simultaneously. In SPECT, the
γ-camera acquires a number of plane-projections, and a line from each plane is
used as the data for a transaxial slice. This may only be approximately true if the
object moves during the acquisition, but this is usually ignored.

Modern PET-scanners can be operated in 2D and 3D mode. The PET-scanner
consists of a number of rings, and in 2D-mode each ring collects the data for a
slice. The number of slices can be nearly doubled by treating adjacent rings as
a single ring, but we shall not distinguish between a “virtual ring” formed by a
ring-pair and a real pair.

Although the object radiates in all directions, only beams that are not perpendicu-
lar to the scannerz-axis are desirable in 2D-mode. Much like the SPECT-scanner,
other beams are limited using a metal shield. In PET, the shields that blocks this
radiation are known as septa. The most common material for the septa is tungsten.

In 3D-mode the septa are removed during the acquisition. This drastically im-
proves the sensitivity of the scanner, but also exacerbates the imperfections dis-
cussed in sec. 2.6.1. More importantly to the work in this thesis, the amount of
data acquired during a scan increases enormously.

While the software developed in this thesis was intended to allow full 3D recon-
struction, the memory requirements is at least4 Gb for a practical problem. This
can not be accommodated by the32-bit computers available at NRU during the
project. We shall therefore, with some regret, disregard 3D reconstructions from
the thesis. We look forward to working on 3D-problems as64-bit computers
become mainstream.

2.9 References

Most of the material in this chapter is standard. The tome by Bushberg et. al. [12]
includes almost everything described in this chapter, and can be recommended
for both practioners and technical oriented people. It is particularly strong on
CT-scanners, but also includes much material on gamma-cameras.

For a hands-on guide to SPECT, the primer by English [19] is a good starting
point. However, it mostly leaves out technical details.

A good source for PET, for those who are technological oriented is [77]. Most
of the descriptions of PET-instrumentation in this chapter was derived from this

2Actually slits of different depth are carved into a single crystal block.
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book. A shorter, but informational, paper for PET is [74], which should be read-
able for most involved with PET.

Positron range is treated in [16], while analytical approximations for several iso-
topes can be found in [28].

For 3D-acquisition, algorithms, and scanner limitations, [5] is a thorough and
complete reference. It is, however, primarily oriented towards people with a
strong mathematical background.

Many issues regarding imperfect hardware in PET is treated statistically in [84].
Randoms, in particular, is treated this way in [85], while a hardware-oriented and
experimental treatment can be found in [35].
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This chapter develops mathematical models of the emission tomographic scan-
ners. We define test-images, phantoms, which will be used throughout the thesis.
We also show typical responses measured by the scanners in the form of sino-
grams.

The bulk of the chapter is mathematically oriented. We define the Radon trans-
form, which is followed by specific models of the SPECT- and PET-scanner, fol-
lowed by a more general linear model. We also describe the Poisson distribution,
which is the fundamental statistical model underlying emission tomographic mea-
surements.

3.1 Phantoms

As a prelude modeling the scanners, we shall define some test-images which will
be used to illustrate the procedures. In tomography, a test-image is called a phan-
tom. Physical phantoms are usually made of plastic, and may contain a number
of chambers. These chambers may in turn be filled with radioactive liquid, which
can be measured separately. This allows a quantitative measurement, which can
be used to evaluate the accuracy of a real reconstruction.

We shall use the following synthetic phantoms in this thesis. In fig. 3.1 we have
a test-phantom, which is suitable for estimating the resolution. It simulates a
number of rods, arranged in a hexagonal grid. The smallest rods which can be
distinguished individually represents the resolution of the scanner.

Phantom 1

0

0.5

1

1.5

Figure 3.1:
This phantom is
useful in testing
the resolution of
a reconstruction
image.

The second phantom, depicted in fig. 3.2, is a classical phantom used in neuro-
logical studies. It consists of a sum of ellipses, which can be treated analytically.
Although we shall not use this property, we use it because it is familiar to many.
We shall use a variant due to Peter Aundal Toft [72], which has a better contrast
than the original.
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Phantom 2

0

0.5

1

1.5

Figure 3.2:
The Shepp-Logan
phantom is a clas-
sical phantom used
to in neurological
tomography [72].

All phantoms and reconstructed images are represented as256×256 pixels. There
is nothing magic about this size, except that images are traditionally rendered as
a2n× 2n for somen. For the purpose of this thesis, a size such as257× 257 (i.e.
a prime) would serve just as well.

For precision, we shall adopt the convention that all images represents a function,
f(x, y), defined in the range(x, y) ∈ [−1; 1] × [−1; 1], where× is the cartesian
product. By definition we setf(x, y) = 0 for any value outside this area, i.e. it
hascompact support.

3.2 The Radon transform∫∫∫
The scanners described in chapter 2, i.e. CT, SPECT, and PET, all measure the
response along a large number of Lines Of Response (LORs). In the case of
emission tomography, the measurements are the sum of events occuring on each
LOR during the scan.

The number of events is proportional to the activity of the substance at each point.
Thus, if` represent a LOR andf(x, y) is the activity at the point(x, y), the mea-
sured activity is proportional to the quantity:

(3.1) g(`) =
∫

`

f(x, y)dx

For this to be useful, we need to parameterize the line`. While several possibil-normal form

ities exist, the most convenient representation in tomography is thenormal form,
which is specified by the distance from origo,ρ, and the angle,θ, as shown in
fig. 3.3. It is worth noting that for a parallel-hole collimator in SPECT, the angle
of the LOR,θ, is the inclination of the collimator.

Normal form of line

ρ

θ

Figure 3.3:
A line represented
in normal form.
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Using this convention, the functiong(θ, ρ) is now a function off(x, y) as speci-
fied by eq. (3.1). This is known as the Radon-transform, after Johann Karl August
Radon [81] who showed that the functions were linked by a differential equation
that has a unique solution under mild restrictions.

It follows directly from eq. (3.1) that the Radon transform is symmetric, i.e. it
satisfiesg(θ, ρ) = g(θ + k360◦, ρ), k ∈ Z, andg(θ, ρ) = g(θ + 180◦,−ρ).
This means we only need to consider the interval0 ≤ θ < 180◦, or alternatively,
0 ≤ θ < 360◦ andρ ≥ 0.

The first form is by far the most convenient in tomographic problems, so we shall
adopt this convention throughout. Furthermore, we only consider images with
compact support. Specifically we havef(x, y) = 0 for max{|x|, |y|} > 1. There-
fore, we haveg(θ, ρ) = 0 for ρ >

√
2.

However, this range is often limited further by a field of view (FOV). In this case
we definef(x, y) = 0 for

√
x2 + y2 > R, where0 < R ≤

√
2 is the largest

distance from the origin. In this case we haveg(θ, ρ) = 0 for |ρ| > R.

3.3 The discrete Radon transform

The Radon-transform of an image is called asinogram. This terms stems fromSinogram

the fact that the Radon transform of a single point is a sine-function.

In practice, the Radon transform is discretized. First off, only a finite number of
projections are made. Considering SPECT as an example, the simplest mode of
operation is “step-and-shoot” where the heads moves to a location (a single value
of θ), and remains there for some time. The angles are discretized to the positions
of the head (or heads for multi-head scanners).

Even in “continuous” mode, where the heads moves slowly along a prescribed
orbit, the data is collected in planes at discrete values ofθ. Here, however, each
value represents an integral over the range of angles which result in a slight blur-
ring of the images.

Secondly, the image is discretized. As described in sec. 3.1, the images in this
thesis will always be256× 256 pixels.

Finally, the position (i.e.ρ) is discretized in a finite number of bins. When a scan-
ner detects an event, it determines a bin corresponding to the LOR, and increases
it. The number of bins depends on the scanner type and will be discussed below.
For synthetic experiments, it is reasonable to sample the sinogram at the same
density as the image. In our case, this would meanρ is sampled at256

√
2 ≈ 362

locations.

With these caveats, we can now show the sinograms of the phantoms in fig. 3.4
and 3.5.

Implementation issues
001010
100001
111100

The first issue that arise concerning an implementation of the Radon transform
is to decide how the image should be represented. There are several options, but
a simple approach that caries over to more complex models, is to represent the
image as a set of point-masses centered at pixels of equal size.
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Figure 3.4:
The Radon-
transform of
the resolution-
phantom in fig. 3.1,
sampled every 3◦.
The sinogram is
scaled so the bins
sum to 100, 000,
which will be used
to illustrate noise.
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Figure 3.5:
The Radon-
transform of the
Shepp-Logan
phantom in fig. 3.2
with bins scaled to
a sum of 20, 000.
The sinogram ap-
pears smoother
than fig. 3.4 as the
image has fewer
sharp edges.

A problem with this approach is that the sampling density ofρ may conflict with
the density of the point-masses for certain angles. This problem can be nearly
eliminated by interpolating the sinogram using a squared-cosine, i.e. if a point of
massw is projected at sample3.25 for some angleθ, the mass is distributed to
sample3 and4 asw cos(.25π/2)2 andw cos(.75π/2)2.

Another option is to ensure the image is sampled densely compared toρ.

3.4 Basic SPECT model∫∫∫
A collimator is a complex device, and we shall use a simple idealized model.
Consider a single point emitting photons and a collimator of lead with a single
cylindrical hole. In the ideal case, photons will only pass the collimator if they
pass through empty space.

Our goal is to derive the fraction of the photons that pass the collimator as a func-
tion of position. Since the geometry is symmetric, we only need to consider the
distance from the collimator,y, and the distance from the center of the hole,x.
We useL to denote length of the hole, andD for the diameter. The geometry is
shown in fig. 3.6.
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Single−hole collimator

•

α

↓

↑

L

↓

↑

y
← →D

← →xFigure 3.6:
A collimator with
a single hole with
diameter D and
length L. The fig-
ure is the plane of
the hole axis and
emission point.

An unshielded point-source radiates with equal intensity in all directions. The
intensity of the beam is therefore propertional to the angle allowed to pass the
collimator. We shall simplify the analysis by assuming thaty � D + L, i.e. the
hole has infinitesimal dimensions. This implies thatα is small, and the intensity
is negligible. We shall therefore normalize the intensity to1 for a source that is
placed on the hole axis, i.e.x = 0.

With these conventions in mind, we first note the following function points:

(3.2) I(x, y) =

{
1 for |x| ≤ D/2,

0 for |x| ≥ D/2 + y(D/L).

For intermediate points, the desired intensity is the ratioα/α0, whereα0 is the
angle for a point at the center:

I(x, y) = αα−1
0 =

(
tan−1

(
|x|+ D/2

y + L

)
− tan−1

(
|x| −D/2

y

))
α−1

0

Using the identitytan−1(x)− tan−1(y) = tan−1
(
(x− y)/(1 + xy)

)
[86]:

I(x, y) = tan−1
([

|x|+D/2
y+L − |x|−D/2

y

]/[
1 +

(
|x|+D/2

y+L

)(
|x|−D/2

y

)])
α−1

0

Simplifying and ignoring second order terms:

I(x, y) ≈ tan−1

(
Dy − L|x|
x2 + y2

)
α−1

0

Since the angleα is infinitesimal, we may further use the relationtan−1(x) ≈ x.
The normalizing term,α0, is defined by the relationI(0, y) = 1, giving the pleas-
ing result:

I(x, y) =
1− (L/D)(|x|/y)

1 + (x/y)2

It is reasonable to simplify this even further. A practical collimator must limit the
photons to small angles, which implies thatL/D is much larger than one (see e.g.
tab. 2.5 on p. 15). Therefore, the termx/y does not change appreciably from0 in
the valid range, i.e.|x| ≤ y(D/L).

We may combine this approximation with eq. (3.2), which simplifies under the as-
sumption thatL andD are infinitesimal, whereas the ratioL/D is non-negligible:

(3.3) I(x, y) =

{
1− (L/D)(|x|/y) for |x| ≤ y(D/L),
0 otherwise.
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Multi-hole collimator

A single-hole collimator is not very useful, except for pin-hole collimators which
require an entirely different analysis. However, when the response of a single hole
is known, it is easy to determine the response of a collimator consisting almost
entirely of holes.

Consider fig. 3.7, which shows the reponse of a number of holes. The measured
response from a single point consists of the sum of the response of all the holes.
The figure shows both the discrete values of the angles and the continuous model
given by eq. (3.3). Clearly, the continuous approximation is quite good, even
though the infinitesimal requirement is violated to make the drawing legible.

Multi−hole collimator
•

• • •

•

•

•
•

•

•
• •

Figure 3.7:
A multi-hole colli-
mator. The contin-
uous model, from
eq. (3.3), is close to
the ratio of angles,
which is shown as
discrete points.

We still need to take normalization into account. Real collimators will collect
nearly the same number of counts regardless of the distance of the point. There-
fore, the area under the curve is nearly constant, and the intensity under the point
should be scaled accordingly.

If depth-dependent sensitivity needs to be modeled, it is probably best to measure
this dependence directly from the scanner. Note that only the collimator response
should be included in this. We shall treat attenuation separately.

Model flaws

It should be noted that eq. (3.3) was derived from 2D-considerations only. A more
detailed analysis involves the solid angle, and scaling becomes a somewhat com-
plicated matter. Nevertheless, the result does not change appreciably when this is
taken into account, and the assumptions used to derive the simple model is too far
from reality to justify such an analysis.

In reality, collimator holes are not cylindrical as this would waste area. Neither
are the holes infinitesimal, photons are reflected, scattered, and may penetrate the
walls between the holes. The accuracy of theγ-camera is another limiting factor.
In short, an exhaustive list of significant issues neglected by the model would be
very long.

When these factors are combined, the measured point-spread function is much
closer to a Gaussian function than the simple triangular function in eq. (3.3). Nev-
ertheless, it captures an essential property of the collimator: beam divergence.

An important consequence of beam-divergence is that the resolution of a point
decreases with the distance from the collimator. Therefore it is critical to get the
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head of the scanner as close to the object as possible. It also means that the mea-
surements can not adequately be represented by the limiting range0 ≤ θ < 180◦,
but must be extended to the whole range0 ≤ θ < 360◦.

3.5 Basic PET model∫∫∫
Fortunately, it is somewhat easier to model PET than SPECT, at least in 2D-mode.
For simplicity, we shall consider a scanner with onlyS = 60 crystals, but the ob-
servations caries over to any number of crystals. A real scanner, such as the GE
Advance at the PET and Cyclotron Unit at Copenhagen university Hospital, has
S = 672 crystals.

The simplest PET-model assumes that a detected event occured on the line that
connects the center of two crystals. These lines are shown in fig. 3.8, and it should
be clear that even a few crystals provides a large number of LORs.

Crystal pairs (S=60, B=13)
s=0

s=1 
s=5 

s=10 

s=14=S/4−1 
s=15=S/4 

s=16=S/4+1 

s=20 

s=25 
s=29=S/2−1 

s=30=S/2
 s=31=S/2+1

 s=35

 s=40

 s=44=S⋅3/4−1
 s=45=S⋅3/4
 s=46=S⋅3/4+1

 s=50

 s=55
 s=59=S−1

r=0
r=26

Figure 3.8:
Some lines con-
nected by crystal-
pairs. Each line
is a point in the
sinogram, and the
number of detected
counts are con-
sidered to be the
line-integral.

Using the convention in fig. 3.8, it is easy to determine the parameter of LOR in
normal form. If an event is detected by the crystalss1 ands2, and the scanner
ring has unit radius, then we have:

θ = mod
(
s1 + s2 + S/2, S

)
180◦/S(3.4)

ρ =

{
− cos

(
180◦(s2 − s1)/S

)
for S/2 ≤ s1 + s2 < S3/2,

+cos
(
180◦(s2 − s1)/S

)
otherwise.

(3.5)

Heremod(a, b) is the modulus function, i.e.0 ≤ mod(a, b) = a + kb < |b| for
somek ∈ Z.

In practice, the field-of-view (FOV) limitsρ so only LORs near the center are
considered. Converting to crystals using eq. (3.5), this limit may be specified by
a constant,B, so we only consider LORs that satisfy:

(3.6) S/2−B ≤ mod(s2 − s1, S) ≤ S/2 + B

Sinogram bins

Just as for SPECT, the probability that an event is measured by a crystal pair is
proportional to the solid angle subtended by the LORs that intersects the crystal
pair and point of emission. Unlike SPECT, disregarding the 3D geometry is justi-
fied. If the scanner ring is thin, i.e. the distance from the crystals to the emission
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point is large compared to the width of the ring, the angle in thez-axis is nearly
constant.

The geometry of a transaxial slice is illustrated in fig. 3.9. The probability that
an emission intersects a given pair is proportional to the angle. In the current
example, there are three pairs where the emission intersects crystal0.

Point emission (S=60, B=13)
s=0

s=1 
s=5 

s=10 

s=14=S/4−1 
s=15=S/4 

s=16=S/4+1 

s=20 

s=25 
s=29=S/2−1 

s=30=S/2
 s=31=S/2+1

 s=35

 s=40

 s=44=S⋅3/4−1
 s=45=S⋅3/4
 s=46=S⋅3/4+1

 s=50

 s=55
 s=59=S−1

• Emission
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3

Figure 3.9:
The probability
of an ideal scan-
ner detecting an
anihilation is pro-
portional to the
angle. The proba-
bility that crystal 0
detects the event
is proportional to
α, while the pair
p(0, 23) ∝ β1.

In PET, the measured data is the number of counts detected by each pair of crystals
(within the FOV). Thus, each event is put in a bin corresponding to an area of the
sinogram. These bins are shown in fig. 3.10, together with the point corresponding
to the LOR of the crystal centers.
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Figure 3.10:
Measured sino-
gram bins for an
idealized PET-
scanner, where all
events are binned
by the crystal pair
intersected by the
LOR. The dots rep-
resents the center
lines used for a
reaslistic FOV.

One thing evident in fig. 3.10 is that the bins do not correspond to equal areas.
This is a consequence of the circular geometry, and can not be correctly classified
as a flaw. Those who are mathematically inclined may view this as a consequence
of eq. (3.5).

This fact is not too important when the FOV is restricted to small values ofρ.
However, since most processing algorithms are designed for a uniformly sampled
sinogram, it is customary to apply ageometric correctionto the sinogram, which
resamples the sinogram to take this into account.

Model flaws
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A number of considerations have been ignored. As briefly mentioned in sec. 2.7,
p. 18, the scintillation crystals in most PET-scanners are not single entities. In-
stead the ring consists of blocks with slit of different depths carved into it. The
part of the block detecting an event is then inferred by interpolating the response
of several photo-multiplier tubes on the back of each block.

This system is not perfect, and it is usually necessary to correct for the sensitivities
of each block by calibration. Furthermore, many of the limitations mentioned in
sec. 2.6.1 p. 17 are difficult to model accurately. Positron range can be taken into
account, but dead-time can only be partially corrected.

3.6 Attenuation model
001010
100001
111100

As described in sec. 2.4 p. 12, some photons may be absorbed inside an object
without reaching the scanner. The probability if this is an exponential function of
the length traversed inside the object and the attenuation constant of the medium.

For brain scans, it is adequate to model a medium with a constant attenuation
constant. Other scans that includes, say, airways and lungs, may not have this
property. A further simplification in neurology is that transaxial cuts are gener-
ally convex (see e.g. p. 10). That is, if two points are inside the object, then any
point on the connecting line-segment is also inside the object.

This implies that a line intersects the object boundary at exactly0, 1, or 2 points.
Now assume a LOR intersects the object as distancesd1 ≤ d2 from the scanner,
and the emission occurs at distancedo. Then the length of the LOR that is inside
the object is given by:

(3.7) l =


0 for do ≤ d1,

do − d1 for d1 < do < d2,

d2 − d1 otherwise.

The distancesd1 andd2 may be precomputed at discrete points for each value
of θ. If the object is a polygon, these distances can be interpolated linearly from
these samples. Oncel is determined, the attenuation can be applied by applying
eq. (2.1) p. 13.

In PET, the position of the object point is not needed. A point inside the object,
d1 ≤ do ≤ d2, is detected when both photons reach the scanner which has the
probabilityp = e−(do−d1)µe−(d2−do)µ = e−(d2−d1)µ. Points outside the object
also obey this law.

3.7 General linear models∫∫∫
All the models above has one crucial property: the measured response is a linear
function of the number of emissions at each point in the scanner. Each emission
has a certain probability of being detected by a particular bin in the sinogram,
but the number of detected events is linear in the number of emissions (ignoring
non-linear properties such as dead-time).

Mathematically we may express this as follows:

(3.8) λ , E {b} = Ax
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HereE {·} is the expectation operator, soλ is defined as a vector that containssystem matrix

the expected number of counts in each bin of the measured sinogram,b. The
number of events emitted from each point of the scanned image is represented by
the vectorx, and they are related by thesystem matrixA.

Generally, each element inx represents a distributed area. In that case, each
emission is assumed to occur from a point with a prescribed distribution. This
distribution can also be modeled byA.

All the discrete models in this chapter can be expressed as a system matrix. How-
ever, we stress that the vectorx represents an image in terms of a set of basis
functions. This notion may be unfamiliar to programmers, who are accustomed
to representing an image as a 2D-array (and a volume as a 3D array).

Thus, even if the continuous basis of the image is chosen to represent pixels (or
voxels in 3D), it does not change the fact thatx is a vector. For simplicity,all
vectors are column-vectors in this thesis. Thus, even ifx represents a rectangu-
lar image, it does not represent a matrix. Please refer to chapter 10 for a full
discussion of this point.

To distinguish between vectors representing rectangular data and matrices, wehypercube

shall use the termhyper-cubefor a vector that represents an array. This has the
advantage of being unambigous (at least for the purposes of this thesis), and is not
easily mistaken. It also conveys the important notion that the number of elements
of the underlying data-array is irrelevant. In tomography, for instance, the FOV
is typically defined by a circle or ellipse, and restrincting an using a rectangular
array to represent an image is inappropriate.

With this caveat out of the way, we shall nevertheless refer to elements ofx as
pixels. While the underlying basis is mostly unimportant in this thesis, it remains
helpful to use familiar terms. We refer to elements ofb andλ as bins for the same
reason.

3.8 Noise model∫∫∫
The linear model in eq. (3.8) only describes the average measurementλ. How-
ever, only a finite number of counts are measured, and this needs to be taken into
account.

Generally, a very large number of radioactive nuclei are injected into the person
being scanned. These are distributed spatially by a probability distribution; deter-
mining this distribution is the true objective of the scanning.

The probability that a nucleus emits a photon in a small volume is very small.
Therefore, the number of photons emitted in such a volume is a stochastic vari-
able,X, governed by the Poisson distribution discovered by Simeon Denis Pois-
son [60]:

P{X = k} = e−λλk/k!, k ∈ N

Here the parameter,λ, turns out to be both the mean and variance ofX.

If each nucleus are considered to be distributed independently (i.e. atracer dose
of the substance is administered), then the number of photons emitted from the
volumes are independent.
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Each photon emitted from the volume has a fixed probability distribution of being
counted by the bins of the sinogram. This distribution is exactly the models de-
rived in this chapter. Thus, if we include an extra bin for undetected photons, the
distribution of the bins is governed by a multinomial distribution.

It turns out that if the bins,b1, b2, . . ., are multinomial distributed with a parameter
drawn from a Poisson distribution, then each of the bins are independent Poisson-
distributed variables [45].

Thus, the number of counts detected by a bin,bi, is a sum of independent Poisson-
distributed variables. This, in turn, is merely another Poisson-distributed variable
[60]:

(3.9) P{bi = k} = e−λiλk
i /k!, k ∈ N

Note that the derivation showed that the measured counts are independent. This
is a very powerful result, which will be used extensively.

In terms of linear models, we may express this as an error-term:

(3.10) b = Ax + e = λ + e

Sinogram examples

We are now ready to show what the sinograms of the phantoms look like when
noise is considered. For variety, the phantoms in fig. 3.4 and fig. 3.5 were scaled to
incoorporate about100, 000 (fig. 3.11) and20, 000 counts (fig. 3.12) respectively.
Clearly, there is a substantial amount of information lost in the process.
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Figure 3.11:
The sinogram in
fig. 3.4 sampled
from a Poisson
distribution with
approximately
100, 000 counts.

Model flaws

The Poisson-distribution is only valid when no amount of restoration has been
performed on the sinogram. Thus, geometric correction, callibration of photo-
multiplers, linearization of dead-time, and other factors result in correlated mea-
surements.

In principle, the Poisson-statistic could be maintained for linear operations by
randomized sampling. However, the idea of applying even more noise to the
measurement is not appealing.
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Figure 3.12:
The sinogram
of the Shepp-
logan phantom
in fig. 3.5 sampled
with approximately
20, 000 counts.

At a more fundamental level, a PET-scan corrected for randoms using on-line
subtraction can result in negative counts as described in sec. 2.6.1. This breaks
fundamentally with the Poisson-distribution.

To model this more accurately, a shifted Poisson-distribution can be used [85].
This use a Poisson-distribution of the combined variance, but shifted to match the
average.

3.9 Software
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All phantoms in this thesis were created bybbphantom found in BBTools. The
system-matrix corresponding to a discrete Radon-transform, using the algorithm
in sec. 3.3.1, can be created as a black-box operator bybbradon (see chapter 10
for information about black-box operators).

A more elaborate model is available asbbtomoemit , which includes beam-
divergence (sec. 3.4), and uniform attenuation of a convex body (sec. 3.6). Geo-
metric correction is not currently implemented, but may be included by a interpo-
lation.

The MATLAB
 image processing toolbox from Mathworks includesphantom ,

which can create a Shepp-Logan phantom. Unlikebbphantom , however, the
average value of the pixels depends on the image size. The functionradon com-
putes the Radon transform of an image, but the corresponding back-projection is
not included.

More elaborate system-matrices can be generated by the package ASPIRE from
Fessler [23]. He also distributes an image reconstruction toolbox for MATLAB



that contains simple implementations of the Radon transform.

Toft showed in [72] how to implement a high-speed Radon-transform using slant-
stacking. He also distributes implementations of the algorithms along with his
thesis.

A different approach is to use Monte-Carlo simulations, although these are mostly
useful for validation purposes. One of the most popular packages is SimSET
(Simulation System for Emission Tomography) [75], but a number of packages
are freely available.
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3.10 References

The Radon transform is treated analytically in a tomographic setting by a number
of authors. One of the most complete is the thesis by Peter Aundal Toft [72],
which derives the Radon transform of a number of analytical functions.

Both the SPECT- and PET-models were derived from first principles, and more
elaborate models is tantamount to instrumentation models. We refer to sec. 2.9
p. 19 for references.

Linear models and the Poisson statistic are used throughout the reconstruction
litterature. In particular we highlight [45], as it is both clear and includes a list of
properties of the Poisson distribution.

Fessler argued that samples of a Gaussian distribution could be a better noise-
model than the Poisson-distribution on PET-systems with on-line subtraction [20].
A more comprehensive analysis of non-Poisson distributed counts and corre-
sponding likelihood-functions is the thesis of Yavuz [84], which advocates the
use of the shifted Poisson-distribution.
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4 Classical reconstruction
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This chapter goes through the classical reconstruction algorithms used in emis-
sion tomography. We start with a description of back-projection, which is a basic
building-block also used in other part of the thesis.

This is followed by a detailed description of the two methods implemented on
most scanners: FBP (Filtered Back-Projection) and EM (Expectation Maximiza-
tion). We give examples of images reconstructed with each of these methods.

For reference, we also mention a few other methods found in the litterature.

4.1 Methods and abbreviations

As usual, there are a plethora of abbreviations found in the litterature. The ab-
breviations most used in the literature are shown in table 4.1. The first part are
common, whereas the lower part as encountered more rarely.

Abbrevation Meaning
FBP Filtered Back Projection
ML Maximum Likelihood
EM Expectation Maximization
OSEM Ordered Subset EM
ART Algebraic Reconstruction Technique
WLS Weighted least-squares
PWLS Penalized weighted least-squares

Table 4.1:
Terms used in clas-
sical reconstruction
methods.

4.2 Back-projection

The back-projection is used in some form in most reconstruction algorithms. Al-
though it is rarely used by itself, we shall study it in some detail before proceeding
to more sophisticated algorithms.

Back-projection is a one-liner: the counts detected in each bin are distributed
evenly on the corresponding LOR. If we consider a point-source, all LORs in-
tersect the point and the total length of LORs in a small area decreases with the
distance from the point.

Intensity function
∫∫∫

Consider an annulus around the emission-point as shown in fig. 4.1. If the radii of
the annulus are given byr1 < r2, then the area of the annulus isA = π(r2

2 − r2
1).

If the sinogram containsP samples ofθ (i.e. P LORs intersects the point of
emission), then the total length of LORs in the annulus is2P (r2 − r1).

This means that the intensity of the annulus is given by:

(4.1)
2P (r2 − r1)c
π(r2

2 − r2
1)

=
2Pc

π(r1 + r2)
→ Pc

πr1
for r2 → r1.
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Back−projection

Figure 4.1:
An annulus around
a point-source and
the intersecting
LORs.

Herec is a scale-factor that determines the number of counts deposited on a LOR
of unit length.

For completeness, the analogously result for a spherical shell for a 3D back-
projection is:

(4.2)
3Pc

2π(r2
1 − r1r2 + r2

2)
→ 3Pc

2πr2
1

for r2 → r1.

If the LORs are distributed evenly (i.e.θ is sampled equidistantly), then any area
(or volume) inside the annulus (or shell) will have approximately the same inten-
sity. Therefore, the reconstructed point will result in a symmetric point-spread
function in this case.

Discrete back-projection
∫∫∫

For a discrete system, the forward projection of bini is given by the linear equa-
tion λ = Ax:

(4.3) λi =
∑

j

A(i,j)xj

To back-projectλi or bi, we must distribute the counts tox in proportion to the
amount (“LOR-length” for a Radon transform) each element contributed to the
measurement. Specifically, the back-projection is:

(4.4) x̂j =
∑

i

A(i,j)bi

More simply, this can be written aŝx = ATb.

Implementation
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Scaling can not be ignored in a real implementation. The simplest way to deal
with scaling is to distribute each bin evenly along the LOR which is inside the
field of view. Note, however, that a point-source will no longer be reconstructed
as a symmetric function.

To this end, consider eq. (4.4). If we distribute the counts inbi according to the
weights given byA(i,:), then we need to scale by the sum of the weights:

(4.5) x̂j =
∑

i

biA(i,j)

/∑
k

A(i,k)

This assumes thatA is non-negative, i.e. there are no negative elements ofA. All
models described in chapter 3 satisfy this requirement.
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With this scaling, the number of counts in̂x matches the number of counts in
b. However, we prefer images which corresponds to image originally put in the
scanner. The Radon-transform and, by extension, all other models in this thesis,
project a point of unit intensity to one count for each projection. Thus, if we
sampleθ at P discrete positions, the reconstructed point will containP counts.
Thus, if we divide byP , we get a scale corresponding to the original image.

This leads directly to alg. 4.1. Since this is the first algorithm in this thesis, a few
comments are in place:

• The result is an operator which performs the back-projection. To back-
project a specific sinogram,b, the matrix-vector product̂x = Bb must be
computed, i.e.xh=B*b .

• The algorithm use BBTools described in chapter 10. The functionbbdiag
is a black-box implementation of the MATLAB

-function diag and func-
tions in much the same way. We will assume that functions in BBTools
similar to MATLAB

 can be used without explanation.

• Generally, the algorithms in the thesis are meant to be illustrative. How-
ever, since the system-matrixA can be a general black-box implemented
as compiled mex-files, the operator produced by alg. 4.1 is competitive with
any other algorithm based on compiled code.

Those who are theoretically inclined may find that the syntaxxh=B*b is
merely cosmetic.

4.3 Examples of back-projection

With this implementation in mind, we may show the result of the back-projection
algorithm. For convenience, the original phantom, fig. 3.1, is reproduced in
fig. 4.2.

It should be evident that pure back-projection is inadequate as a reconstruction
algorithm. It is difficult to discern even the largest hot-spots in the phantom and
edges are not preserved well.

Algorithm 4.1: Back-projection
Create a back-projection operator given a non-negative system-matrix, A, and the
number of projections.

H function B = backproject(A, P)

p = A ∗ ones(size(A, 2), 1); Project to determine weights

c = double(p 6= 0); Zero out null entries

p(p ≡ 0) = 1; Avoid division-by-zero

B = AH ∗ bbdiag(c./(P ∗ p)); Construct operator
J
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Phantom 1
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Figure 4.2:
A reproduction
of the resolution-
phantom in fig. 3.1.

Back−projection

0

0.5

1

1.5

Figure 4.3:
The resolution-
phantom in fig. 4.2,
reconstructed from
the noisy sinogram
in fig. 3.11 using
back-projection.

4.4 Filtered back-projection

The Filtered Back Projection algorithm (FBP) the dominant algorithm used in
medical reconstruction. The images produces are linear in the inputs, and the al-
gorithm is sometimes known simply as “linear reconstruction”. As the name sug-
gest, it is based on back-projection, but use a filter to compensate for the weakness
of pure back-projection.

Again, the underlying idea is simple: solve the linear systemAx = λ for x, where
A is the discrete Radon-transform. Unlike back-projection, however, finding an
efficient way to implement the scheme is not intuitive.

Derivation of FBP
∫∫∫

Filtered back-projection is usually derived in the continuous domain using the
Fourier Slice Theorem(also known as theCentral Slice Theorem). The details are
messy, and require careful attention at singularities. Since most of this thesis is
based on linear algebra, we shall give an informal derivation that lends itself to an
implementation in this setting.

The starting-point for FBP is a direct solution of the linear systemλ = Ax which,
in the presence of noise, becomesAx̂ ≈ b. As mentioned previously, the solution
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is given by a filter followed by a back-projection:

(4.6) x̂ = ATFb

We may now pluĝx into the linear equation:

(4.7) b ≈ Ax̂ = AATFb

Thus, a good filter approximates the inverse (or pseudo-inverse in the general
case) of the operatorAAT. In other words, if a sinogram with a single non-zero
bin is filtered andAAT is applied, then the new sinogram should be approxi-
mately the same as the starting point.

ConsiderAAT, which represents a back-projection followed by a forward pro-
jection. Assume the system-matrixA is the Radon-transform, and let us momen-
tarily assume that onlyθ is discrete.

The situation for a circular FOV is sketched in fig. 4.4. A bin is first distributed
on the LOR, which is in turn forward projected to the same point. On the other
hand, when the LOR is projected on a plane with a different angle, the result is a
rectangular function.

Illustration of AAT
•

Figure 4.4:
Back-projection
followed by a for-
ward projection,
representing the
operator AAT.

Since the projection may be placed anywhere, we need a position-invariant filter
that blocks rectangular functions. Such a filter is most easily designed in the fre-
quency domain. Ifr(x) is a rectangular function of width2a, symmetric around
x = 0, then the Fourier-transform,R(ω) = F{r(x)} =

∫∞
−∞ r(x)e−jωxdx, is

given by [86]:

(4.8) R(ω) =

{
2a for ω = 0,

2 sin(aω)/ω otherwise.

This can not be completely suppressed, but it can be rendered mostly harmless
by damping low frequencies. In fact it turns out that it suffice to neutralize the
denominatorω by applying a ramp-filter:

(4.9) F (ω) =


|ω| for |ω| < ωc,

|ω|/2 for |ω| = ωc,

0 otherwise.

The cut-off frequency,ωc, is a necessary for the inverse Fourier-transform ofF (ω)
to exist [44].

The inverse Fourier-transform ofR(ω)F (ω) has sharp peaks nearx = ±a, but
the integral of an area around a peak is small and diminishes asωc becomes large.



i
i

i
i

i
i

i
i

40 Classical reconstruction

In the discrete case these peaks may be visible in the form of “streak” or “star”
artifacts as we shall show in the examples.

The caseω = 0 is difficult to analyze properly. The ordinary analysis requires
Stieltjes-intergrals, a generalization of Riemann integrals. It also requires that
back-projection occurs on an infinitly large image, soa can become infinite in
a limit. The result is that the ramp-filter also suffices in this case under mild
restrictions.

Curiously, this result remains approximately valid, to within a factor of2, in the
discrete case [78]. This is surprising, since the filter removes the average, i.e. the
total number of counts in the filtered sinogram is (nearly) zero.

Implementation
001010
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While it is difficult to get the theoretic details of FBP right, it is relatively easy to
implement once the filter has been established. A basic implementation is given
in alg. 4.2, which constructs an operator. It is necessary to scale by the number of
projections, for the same reason as the back-projection case. The factor of2 was
mentioned in sec. 4.4.1.

Again a few comments are in place:

• The filter is designed in the frequency domain and inverted to the spacial
domain before being applied. It is common to find implementations which
skips this step, which leads to unnecessary aliasing.

• The filter is applied to each column of the sinogram, which is a hyper-
cube with samples ofρ andθ. In linear algebra this is known as a Kro-
necker product, usually written as⊗. The operator that appliesAi along
all data along dimensioni on anN -dimensional hyper-cube is given by
A = AN ⊗ · · · ⊗A1.

Since no filtering takes place between angles, we put in an identity operator
on dimension 2.

Algorithm 4.2: Filtered back-projection
Basic implementation of filtered back-projection. The input is a Radon-transform,
A (created by bbradon ), and the sinogram is an S × P hyper-cube with S

equidistant samples of ρ and P equidistant samples of 0 ≤ θ < 180◦. The cut-off
frequency is normalized to 0 ≤ ωc ≤ 1.

H function B = fbp(A, S , P , ωc)

L = 2ˆnextpow2 (max (3 ∗ S , 128)); Half-length of DFT

ω = (0 : L)T/L; Frequencies from DC to Nyquist

f = |π ∗ ω| . ∗ (ω ≤ ωc); Use radians and apply ramp with cut-off

p = real(ifft([f ; f(end − 1 : −1 : 2)])); Compute impulse-response

p = [p(end + 2− S : end) ; p(1 : S)]; Extract the useful part of the impulse

p = p/(2 ∗ P); Scale

C = bbconvn(S , p, ’same’ ); Create convolution operator

F = kron(bbeye(P), C); Apply convolution on every value of θ

B = AT ∗ F; Create FBP-operator
J
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• The operator produced by alg. 4.2 is an idealpre-conditionerfor an iterative
algorithm that solves a system using a more complex model than the Radon
transform.

For example, assume thatA is a model that includes beam-divergence and
attenuation,B is the FBP-operator constructed from the Radon transform,
and b is the measured sinogram. Then a standard iterative solver, e.g.
xh=lsqr(B*A,B*b) , converges in a few steps.

4.5 Examples of FBP

The basic operator created by alg. 4.2 was used to reconstruct the resolution-
phantom using the noisy singram with20, 000 counts. The result is shown in
fig. 4.5, which is clearly a useless approximation of the original phantom in
fig. 4.2.

Filtered Back−Projection (FBP)
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Figure 4.5:
The resolution-
phantom recon-
structed using
FBP with cut-off
ωc = 1.

To get a more useful image, we need to filter out the noise by lowering the cut-off
frequency. Eactly what value to use depends on the circumstances and intended
use of the image, but as we only need to illustrate the technique, we will use the
arbitrary value ofωc = 0.175. The result is shown in fig. 4.6.

FBP with cut−off
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Figure 4.6:
A new reconstruc-
tion, but low-pass
filtered with a cut-
off ωc = 0.175.

Note that smoothing comes with a loss of resolution. The ultimately smooth im-
age (cut-offωc = 0) is blank and contains no information.
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An artifact often seen in reconstructed images is “ringing”. In this context is
usually manifest itself as streaks radiating from the center and outwards. This is
sometimes called “star artifacts” [19].

The term “ringing” comes from electronics and is meant in the sense of a bell-
ringing. Here, it comes from the abrubt change atωc in eq. (4.9), which is con-
verted to a highly oscillating function. As touched briefly in sec. 4.4.1, the average
is negligible, but the peaks will always be high. This is a well-known result known
as Gibbs phenomenon [54].

To reduce this kind of artifacts, it is common to modify the filter by multiplying
by a window-function. It may be confusing, because there are plenty to choose
from in the litterature. In practical terms this is not too important, and the author1

is inclined to agree with the following quote [58, p.534]:

There is a lot of unnecessary lore about choice of a window function,
and practically every function that rises from zero to a peak and then
falls again has been named after someone.

. . .

However, at the level of this book, there is effectivelyno difference
between any of these (or similar) window functions.

We shall stick to the so-called Hamming window below. One thing to notice about
windows is that it is often possible to increase the cut-off frequency. Fig. 4.7 be-
low was reconstructed withωc = 0.3 to yield approximately the same resolution
as fig. 4.6.

FBP with cut−off and window
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Figure 4.7:
Another recon-
struction, low-pass
filtered with cut-off
ωc = 0.3 but in-
cluding a Hamming
window to reduce
star-artifacts.

4.6 EM reconstruction

After back-projection and, possibly, attempts at direct inversion of the system-
operator, the EM-algorithm is likely to be one of the first algorithms a novice
would think of. To back up this claim, the author knows of4 persons who came
up with the idea independently2.

1The author is an engineer formally trained in the “lore”.
2This count includes the author.
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Let us rehash the idea of back-projection: the counts measured in a bin is dis-
tributed evenly on the LOR from which they could have come. Now suppose we
already have a rough idea about what the image looks like. Instead if distribut-
ing the counts evenly, we may distribute them on the LOR in proportion to the
concentrations in the approximate image.

This is the basic step of the EM-algorithm, and it produces an estimate which
should be better than the image we started with. Thus, we may improve the new
image by applying a new step. Thus we have an iterative procedure that, hope-
fully, converges to a fix-point.

The EM-algorithm is sometimes known as “iterative reconstruction” (as opposed
to “linear reconstruction”), because it is the second major algorithm implemented
on many commercial scanners.

Implementation
001010
100001
111100

As explained, the counts in binbi should be distributed in the LOR in the pro-
portion given by the pixels in the previous estimate,x̂j , in the LOR. Since the
length of the LORs are represented by a system-matrix, the counts must also be
weighted with the elements ofA. We may therefore express the EM-step by an
equation similar to eq. (4.5):

(4.10) x̂′j =
∑

i

biA(i,j)x̂j

/∑
k

A(i,k)x̂k

Like the back-projection algorithm, this produces an image with a total number
of counts that matches the number of acquired counts, and we must divide by the
number of projections to get an image comparable with the original.

There is, however, a more general way to handle this. Instead of dividing by the
number of projections, we can divide each pixel by the amplification factor:

x̂′j =
1∑

i A(i,j)

∑
i

biA(i,j)x̂j

/∑
i

A(i,j)x̂j

=
(

x̂j∑
i A(i,j)

)∑
i

A(i,j)

(
bi∑

k A(i,k)x̂k

)
(4.11)

This is the final iteration of the EM-algorithm, and the bulk of the work can be
performed efficiently as matrix-vector products as shown in alg. 4.3.

Ordered subset

The EM-algorithm converges rather slowly, and since it is used in practical work
it is desirable to speed it up. Theordered subsetalgorithm, invented by Harold
Malcolm Hudson and Richard S. Larkin [37], is one way implemented on many
scanners, often under the name OSEM.

The idea is to update only a subset of the projections at each iteration. We shall
not discuss this algorithm further, as it is merely intended to be a faster version of
the EM-algorithm.
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Justification of EM
∫∫∫

The idea described above is simple to understand, but there was little to motivate
it and even a cursory analysis reveals problems. Suppose we draw the LORs cor-
responding to all bins with non-zero counts. If we create an iterate by placing a
single point on each LOR at random, except where it intersects another LOR, then
it converges to a fix-point in one step.

While this result appears alarming, we note that it may be impossible to construct
such a solution in a discretized image. It does, however, suggest that algorithms
that are not backed by solid theory should be regarded with suspicion.

Happily, the simple iteration described above happens to coincide with anEx-
pectation Maximization(EM) algorithm, which computes a maximum-likelihood
solution for a likelihood defined by the Poisson-distribution.

It is beyond the scope of this text to delve in the theoretical foundation of this
algorithm and refer to the references in sec. 4.9 for details. We will, however,
state the basic result about convergence.

(EM-Convergence) Let b be a sample of random vectors with independentTheorem 4.1:
Poisson-distributed elements with parametersλ = Ax. Furthermore, let̂x0 be
an image with entirely positive pixels.

Assume thatA is non-negative, and that no element inATb is zero, i.e. all pixels
in the image are intersected by a LOR corresponding to a bin inb with non-zero
counts. Finally, assume thatnull{A} = {0}.

Then the iterates of the EM-algorithm,x̂0, x̂1, . . . , converges to the maximum-
likelihood solution:

(4.12) lim
i→∞

x̂i = argmax
x

Prob
(
b|λ = Ax

)

See [45].�PROOF

The most revealing about this theorem is the conditions required to make it true.
First, the number of pixels in the image must necessarily be smaller than the num-
ber of sinogram bins. Secondly, sampling the sinogram denser to accomodate

Algorithm 4.3: EM-Reconstruction
Reconstruct an image using the EM-algorithm, given a non-negative system-
matrix, A, a measured sinogram of independent Poisson-distributed counts, b,
and a limit on the number of iterations.

H function x̂ = em(A, b, imax)

w = AT ∗ ones(size(A, 1), 1); Back-project to determine weights

w(w ≡ 0) = 1; Avoid division-by-zero

x̂ = ones(size(A, 2), 1); Initialize iterate

H for i = 1 : imax

x̂p = x̂; Save iterate for convergence test

p = A ∗ x̂; Forward-project current estimate

p(p < εM ) = εM ; Avoid division by zero

x̂ = (x̂./w). ∗ (AT ∗ (b./p)); Evaluate eq. (4.11)

H if
∥∥x̂p − x̂

∥∥
2

< ‖x̂‖2 ∗ 1e − 3, break Stop if we reached a fix-point
J J J
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more pixels in the image is only helpful if the number of acquired counts is large
enough to make most of them non-zero.

In other words, the EM-algorithm relies onpixelationof the image to function.
The EM-algorithm must be able to “see” the pixels, i.e. the images produced by
the method are not an approximation of an underlying continuous function. This
is a distinct disadvantage.

4.7 Examples of EM

If the EM-algorithm is used naively it often produces useless results. Fig. 4.8
shows the resolution-phantom reconstructed using the EM-algorithm. Although
better than an unfiltered version of a FBP-reconstruction, it is not useful when
used in this form.

EM Reconstruction
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Figure 4.8:
The resolution-
phantom recon-
structed using the
EM-algorithm.

One way to produce a useful image, is simply to apply a post-filter on the recon-
structed image. The image in fig. 4.9 is the same as fig. 4.8 after a Gaussian filter
with a FWHM of about3.52 was applied. It is clear that such a filter is necessary.

EM with post−filter
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Figure 4.9:
Fig. 4.8 post-
filtered with a
Gaussian kernel
with FWHM≈
3.52 pixels.

Another popular way to avoid excessive noise, is early stopping. This simply put
a limit (imax in alg. 4.3) on the number of iterations taken and prevents the EM-
algorithm from converging to the maximum-likelihood solution. The result after8
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iterations is shown in fig. 4.10. Early stopping is another way to speed up the EM-

EM after 8 iterations
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Figure 4.10:
EM-reconstruction
using early stop-
ping.

algorithm, since the number of iterations are limited to a fixed number. However,
each iteration still require approximately twice the work of the FBP-algorithm,
and can not be recommended in general.

A better way to incorporate a filter is to use asieve[65]. In the elementary form,
each iteration in the EM-algorithm is followed by a Gaussian filter. This filter
should have a substantially smaller kernel than a post-filter, and significantly re-
duces the number of iterations required for convergence.

The resolution-phantom reconstructed using a sieve is shown in fig. 4.11. Given
the speed of this algorithm, together with the solid underlying theory, this should
method can generally be recommended.

EM with Gaussian sieve
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Figure 4.11:
EM-reconstruction
using a Gaussian
convolutive sieve
with FWHM≈ 1.2
pixels.

4.8 Other algorithms

Historically, the first algorithm was Algebraic Reconstruction Technique (ART),
which is a direct solution of the linear system using a Gauss-Seidel iteration.
There are several similar algorithms, e.g. SIRT (simultaneous iterative recon-
struction technique), SART (simultaneous algebraic reconstruction technique),
and Kaczmarz method. All of these are obsolete, and should not be used any
more.
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An alternative to filtered back-projection is “filtering after back-projection”. The
method applies a filter after back-projection to compensate for the spread given
by eq. 4.1. Unlike FBP, the problem with singularities is easily circumvented in
the discrete case by integrating over a pixel or putting the singularity between
pixel-centers.

4.9 References

The original paper by Radon [59] is in the domain of people who cope with
Stieltjes-, Cauchy-, and ordinary Riemann-integrals. A fair knowledge of Ger-
man is recommended, but it is a worthy read for anyone demanding mathematical
rigor. Many equations found in the litterature can be found here together with the
assumptions necessary for them to be valid; a point often glossed over elsewhere.

Traditional derivations of filtered back-projection, based on the Fourier slice the-
orem, can be found in numerous places. A terse derivation is given in [5], while
a more verbose version can be found in [72]. While such derivations may appear
to motivate the ramp-filter, they do, in the oppinion of this author, fall short in
rigour. If rigor is desirable, the paper by Radon should be consulted.

The treatment of FBP given here is new, but the intepretation as an inverse of the
operatorAAT was noted by Kawata and Nalciogli [40]. However, they made no
attempt at analyzing the operator other than stating that the inverse “corresponds
to the two-dimensional rho-filter”.

EM-algorithms are effective at finding maximum-likelihood solutions for a broad
class of problems, and several excellent texts, such as [8], are available. The orig-
inal papers in the context of reconstruction is by Shepp and Vardi [64], and Lange
and Carson [45]. Of these, the latter should be prefered as it includes scaling and
the convergence-proof in theorem. 4.1.

The method of sieves was first used for tomographic reconstruction by Snyder and
Miller [65]. The paper includes a clear explanation of the problem with the basic
EM-algorithm and can be recommended for this reason alone. It also argues that
pixelation, in isolation, does not help the EM and establish that Gaussian sieves
are backed by solid theory.

Eugene Veklerov and Jorge Llacer took the sieve method a step further in [76],
where they gave a rigorous method for choosing the sieve in the EM-algorithm.

A classical reference for the early methods described in sec. 4.8 is [39], while
“filtering after back-projection” is described in a continuous setting in [72].
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5 Reconstruction goals and
strategies
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This chapter contains a discussion about the practical requirements imposed on a
reconstruction algorithm. The majority of this chapter is collected from personal
experience, and is therefore less rigorous than other parts of the thesis. Many of
the opinions expressed in this chapter are personal opinions of the author, and
should not be construed as being universal.

When other requirements than accuracy are considered, linear methods have many
desirable properties that are important from a user-point of view. We discuss pre-
vious research in this context, and go forward with a description of regularized
reconstruction.

5.1 User requirements

One truth holds in engineering as well as other aspects of life: if you can not
formulate what you want, then the chance of getting it is remote. The usually
way for engineers to express “what they want” is through a cost-function. When
a cost-function has been decided upon, a solution can be quantitatively evaluated
and therefore optimized.

It follows that it is important to consider the properties of the cost-function. Usu-
ally it is necessary to balance several conflicting goals, and this is especially true
when it comes to reconstruction. Since the work in this thesis aims to provide
useful solutions, the demands of the users should be considered.

Many issues are important from a clinical point of view. Although some require-
ments may be relaxed in research studies, it still remains that methods with little
clinical prospect are unlikely to be used much. The following list is a compilation
of issues drawn from the author’s experience from working with potential users.

1. Low variability: If a person is scanned twice the results should be alike.
Scans between persons must also look the same, as this is the basis that
clinicians use for diagnosing illness by inspecting the images.

2. Minimal clinical work: The system must be useful without demanding
much extra clinical work. For instance it is not reasonable to assume gen-
erally that several MR-images are available.

3. Minimal manual processing: The level of required (i.e. mandatory) man-
ual work on the collected data must be low.

4. Consistent with old methods:If at all possible, the reconstruction should
allow a gradual introduction of new features. This allows clinicians to start
with something familiar and introduce more advanced methods as they ex-
pand their understanding of the system.
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5. Homogeneous:It greatly facilitates interpretation of the images if they are
homogeneous, i.e. the point spread function (PSF) should be the same over
all parts of the image. For specificity, we shall use the term “homogeneous”
if the PSFs are spatial invariant and isotropic, i.e. independent of position
and direction.

6. Intuitive: The reconstructed image and the true concentration should be
related in an “obvious” way. If the reconstruction is inhomogeneous, it
should at least be possible to characterize it accurately in a form which can
be conveyed to the user in a comprehensible form.

7. Free of artifacts: While noise is unavoidable and images will never be
perfect, a good reconstruction algorithm should suppress artifical artifacts.
In other words, noise must not fool a reconstruction algorithm to produce
an image with brain-like features.

8. Few assumptions:Clinicians who uses the images for diagnosing patients
can be uneasy with methods based on elaborate models of the brain. Their
interests are mainly parts of the brain that are abnormal or lesioned, and it
is hard to build a prior that is acceptable to them.

9. Coverage:It should be possible to use the method for most scannings seen
by an individual doctor. As an example, an algorithm should not build on
assumptions proven only for a single tracer. The training necessary for in-
terpreting images reconstructed with a new method is not justified unless it
can cover a reasonable amount of the total number of scannings.

10. Comparable: In dynamic studies the different time frames must be recon-
structed similarly, to make it possible to interpret the sequence. For this
reason the FBP-algorithm is currently preferred to EM in such studies.

11. Numerically robust: The method should always work. The users are
trained to understand human physiology, not numerical algorithms. The
user will generally be unable to intervene if the reconstruction misbehaves.

12. Rigorous and simple:Engineers, physicists, and mathematicians are gen-
erally easier to convince than clinicians when it comes to declaring one
method better than another. Nevertheless it remains helpful to use well
known mathematical theories. It is important that this group “likes the
method”, since the clinicians are unlikely to even consider a method unless
the other experts agree.

13. Quantitative and accurate: Reconstructed images should reflect the con-
centration distribution as closely as possible. The ability to compute ratios
between concentrations in varios regions of the brain has a big impact on
both diagnostics and research. In particular the ability to model tracer-
kinetics depends on this.

Discussion

A project that focuses on accuracy alone is not likely to have much success; it
was no mistake that this item is last on the list. Even though accuracy is perhaps
the easiest requirement to put into a cost-function, we should not forget that the
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people who will use the images are trained at interpreting them. This means that
consistency between images are usually a more important parameter.

Looking at the list as a whole, one may get the impression that clinical users are
overly conservative. Generally, new methods are introduced only if the diagnos-
tic power is demonstrably improved. To illustrate this point, we mention that it
is still subject to debate whether attenuation-correction should be used in clini-
cal SPECT. If users could be convinced by, say, a root-mean-square metric, this
question would have been settled a decade ago. In 2002, only 9 of 19 Danish
SPECT-centers used it routinely1.

The ability to produce results similar to existing methods can not be underesti-
mated. In engineering, this goes under the heading “backwards-compatibility”
and is by no means limited to reconstruction algorithms. Consider the likely suc-
cess of the following products, regardless of technical merits:

• A text-processor that can not read any existing document.

• A CPU unable to run any previously purchased software.

• A car running on an exotic fuel, but neither gasoline nor diesel fuel.

It should be noted that lives are potentially at stake. A method should reflect this
in the sense thatif it delivers an answer it better be a good one.

A method should be viewed in light of the discussion above, although a research
project can choose to ignore some aspects in order to set the stage for progress.
However, principles that inherently fails to balance the issues are unlikely to be
adopted for medical use.

5.2 Technical requirements

There are also a number of technicalities that should be considered. Unlike the
user requirements, these are relatively easy to address.

Computational power

Computational power represents a one-time (possibly large) investment but not
clinical work. It is reasonable to expect that such investments will be made if they
offer significant advantages over old methods.

Another factor is the continued increase in computational power. Any method
that runs on existing hardware is likely to be useful for routine use on computers
developed in 5 years. According to the industry’s own predicitions [63], based
on factories under construction and laboratory technologies, the current trend is
expected to continue to at least 2016.

1From the seminar “New challenges in SPECT”, held by The PET and Cyclotron Unit, Copen-
hagen University Hospital, 19–20 Sep. 2002.
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Model mismatch

It should be evident from chapter 3 that scanning models used in reconstruction
are somewhat crude approximations. This is a result of the complicated interac-
tions in the scanning process, uncertainties in calibrations, and approximations
necessary to make the reconstructions practically feasible.

However, there is another source of model mismatch. The user may deliberately
turn off some levels of realism for a number of reasons. For example, a model of
scatter or attenuation could be turned off in order to approximate the usual results,
to increase the reconstruction speed, or simple distrust.

There are situations where each of these reasons are perfectly valid. It is impor-
tant to use methods that do not assume that the models are the actual truth, and
robustness with respect to the model is very desirable.

Non-negativity

Since concentrations are non-negative it is a question whether the reconstructed
image should be allowed to contain negative values. This may also be posed as
a question about whether it is acceptable to introduce bias to reduce variance.
No reasonable2 method can guarantee that a region, which is truly zero, will be
reconstructed as zero. Thus, a non-negativity constraint implies that such regions
will be biased.

From a technological point of view one may ask whether it is reasonable to ex-
pect non-negative concentrations when corrections result in negative counts, as
discussed in sec. 2.6.1 p. 18.

Neither of these arguments are likely to convince a practioneer of the plausability
of negative concentrations. However, negative values occur mainly in low-count
regions, which is mostly areas outside the head and low-affinity regions. While
the former region is without much interest, the latter is often used as a reference.
In this context a large part (e.g. cerebellum) is chosen and averaged to give a ref-
erence value. In this kind of studies it is crucial to have unbiased estimates of the
reference region.

Nevertheless, the negative counts represents an inaccuracy it would be best to
avoid. If areas are known to be zero (e.g. because they are outside the head),
then the reconstruction should be restricted in this way. We shall return to this in
sec. 5.6.

Statistical analysis

Not all uses of the reconstructed images involves human interpretation. Currently,
most statistical analysis of of emission tomographic imaging is based on the the-
ory of Gaussian Random Fields.

The theory was first developed by Keith John Worsley et al. in [82], although this
should be regarded as a precursor for [83] where the theory was solidified. Those
equipped with the mathematical skills necessary to read this paper are encouraged
to read it.

2One “unreasonable” method that do meet this requirement would be an algorithm which recon-
structed any data as a zero image.



i
i

i
i

i
i

i
i

55

While random field theory is well beyond the scope of this thesis, we may never-
theless note that the noise of the reconstructed image is modeled as white noise
filtered by a Gaussian kernel. Thus, to produce images useful in statistical analy-
sis, the reconstruction algorithm should approximate this model.

Image continuity
∫∫∫

Discretization of the reconstructed image is a necessary prerequisite for a recon-
struction algorithm. Theoretically, one could attempt to determine the position of
the emission of each count acquired during the scanning process. However, since
the counts are modeled as independent events, we are in reality approximating a
probability distribution of the emission positions.

If we assume this distribution is inL1 and non-zero values are confined to the
interior of the scanner it follows from the Riemann-Lebesgue lemma [30] that it
is band-limited3. The only relevant functions this author can imagine without this
property is a finite sum of Dirac functions.

Band-limited functions can be discretized, as established by the sampling theorem
[54]. For a sum of Dirac-functions, it is probably acceptable to bin the emission
points in pixels of finite size, especially if we can make the pixels arbitrarily small.

If we reconstruct a series of images with an increasing number of pixels, it is
desirable that these converges towards a stable solution which estimates this dis-
tribution. In a nutshell, a reconstructed image of size1024 × 1024 should be no
worse than an image of size128 × 128, if the underlying functions satisfies the
requirements above.

As explained in sec. 4.6.1 the unmodified EM-algorithm relies on pixelation and
does not have this property. In light of the discussion above, the method should
always be regularized, e.g. using a sieve.

5.3 Statistical reconstruction

After considering the requirements, we now turn to the different strategies. The
reconstruction literature is vast, and it is beyond the scope of this text to even
attempt summarizing the existing work. For early methods, we refer to the refer-
ences in sec. 4.9 p. 47.

We note, however, that the majority of work in the field in the past 10 years has
centered around statistical methods. Those interested in these methods should
consult the excellent review by Fessler [22], which treats many of these methods
from an algorithmic point of view in a general setting ofsurrogate functions. All
EM-algorithms, for example, may be viewed as an optimization algorithm using
a surrogate function derived from a Kullback-Leibler distance [8].

Generally, these methods use an iterative scheme to maximize a probability that
involves the scanner (described in chapter 3) and a prior. This has led some au-
thors to characterize these algorithms under headings such as SIRA (Statistical

3Roughly,L1 means “absolutely integrable”, but also includes a requirement from measure theory;
a rather difficult branch of mathematics. From a practical point of view, the last property excludes the
Dirac function but can be ignored otherwise. The confinement property is a rephrasing of compact
support.
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Iterative Reconstruction Algorithms) or SIR. The following describes a few rep-
resentative samples of this kind of information used by such methods.

Most algorithms use Bayesian inference at their core. A typical example of this
approach was given by Bowsher et al. [11], who used a prior that encouraged
regions of constant concentrations. They showed that this worked well on a phan-
tom which matched this prior.

The approach was taken to an extreme by Philipsen et al. [57], who used adaptive
snakes (an active contour model) in a weak-membranes model as a prior. The
resulting objective function was optimized using a mean-field approximation in
a simulated annealing algorithm. The author finds that papers like this should
convince most people that the quest for improved images has sent researchers to
areas very far from the algorithms currently used in medical imaging.

We also mention a paper by Lee et al. [48], who used a Bayesian method with
a prior that encouraged piecewise linear areas. While the algorithms are quite
typical, it differentiates itself by justifying the prior using autoradiography.

In a different approach, Ardekani et al. [3] used cross-entropy to reconstruct im-
ages using several MR-scans together with the emission scan. Most of the remain-
ing literature builds a prior from the other modalities before the reconstructing
begins.

A remarkable paper by Dougherty et al. [18] demonstrates how difficult it is to
validate statistical reconstruction methods. The paper describes a phantom of a
rat-brain, which was derived from tomographic scannings followed by autora-
diography. This should result in a gold standard for a realistic image, but co-
registering the emission data with the autoradiographic sections proved difficult.

Discussion

Given the enormous body of work in statistical reconstruction, there has been re-
markably little impact in medical usage. While this could be ascribed to inertia,
there are factors that make statistical reconstruction unattractive in clinical use.

First, statistical methods rely on mathematical brain-models. This means that
noisy measurements are guided towards meaningful brain-images, implying a ten-
dency to turn noise into brain-like artifacts. This is inherent in the approach taken
by such algorithms. We note that this is a common objection even for the EM-
algorithm described in sec. 4.6 p. 42; arguably the simplest possible statistical
reconstruction method.

Second, most statistical methods use statistical distributions in a hyper-space. It
is very difficult to visualize this in a way that is meaningful to the user. Although
this may be regarded as a “visualization problem”, it must be solved if statistical
methods are to be practical.

Thirdly, the most advanced statistical methods are difficult to compare across pa-
tients. However, in clinical use it is common to compare an image with a set of
normals, i.e. images produced from healthy volunteers.

Finally, the images produced by the statistical methods usually looks qualitatively
different from the classical methods. As already argued in sec. 5.1, this does not
bode well for clinical adoption.
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Nevertheless, statistical methods have the ability to use very detailed models of
the scanning process. If an appropriate prior can be build from experimental
knowledge, and quantitative accuracy is the only concern, then statistical methods
may well be the proper choice.

5.4 Linear reconstruction∫∫∫
Filtered back-projection, as described in sec. 4.4 p. 38, is a linear reconstruction
method. This means that the reconstructed image can be described in terms of
a matrix: x̂ = A†b. For FBP, this matrix was given byA† = ATF, where
A is the discrete Radon transform andF is a filter, usually specified as a cut-off
frequency and a window. Generally, the matrixA† may originate from a number
of algorithms.

One crucial property common to all linear methods, is that they are easy to charac-
terize. Since they are linear, a given image will, on the average, be reconstructed
asE

{
A†b

}
= A†λ = A†Ax. Thus, if we letx consists of a number of points,

we can visualize the reconstructed PSFs. An example for the FBP is given in
fig. 5.1.

PSFs for FBP

0

0.5

1

1.5

Figure 5.1:
Point-spread func-
tions for the FBP-
reconstruction us-
ing the parameters
in fig. 4.7 on p. 42.

This leads to the question: how can this be improved without violating the user-
requirements from sec. 5.1? Limiting new reconstruction methods to the exact
same result as FBP does not constitute progress.

In the opinion of this author there is room for improvement in at least the follow-
ing areas:

• Make PSFs closer to homogeneous Gaussians:It is worth noting from
fig. 5.1 that the PSFs are elongated near the edges. Furthermore, the space
between them contains negative values, even in this noiseless case. How-
ever, the PSFs are close enough to Gaussian that this should not make a
qualitative difference in the look of the reconstructed images.

• Increase resolution: The whole reason for the project is to improve the
resolution, which in the case of linear reconstruction is equivalent to make
the PSFs more narrow. There would be no objections to this from the users,
provided the PSFs remain near-Gaussian.
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• Incorporate anatomy: Anatomical information should optionally be em-
ployed to get improved images. However, this is only likely to be successful
if the user is in absolute control. The user must understand exactly what is
going on, and be able to turn off any modification. This is particularly im-
portant in areas that are suspected to contain lesions and other irregularities.

• Use more accurate system-matrices:As described in chapter 3, the Radon
transform is a crude scanner model, and incorporating effects such as scat-
ter, attenuation, and beam-divergence is appropiate. This, however, is only
meaningful if the user is allowed to switch them off.

• Improve noise-models: Only poor noise-models can be incorporated in
strictly linear methods. However, quasi-linear methods may be applicable,
where the reconstruction-matrixA† is constructed using data. If necessary,
the same matrix can be used to reconstruct any number of images, includ-
ing normal material or different times in a dynamic series. Preferably, this
model should still result in homogeneous Gaussian PSFs.

Discussion

The most prominent example of a quasi-linear method is “Penalized Weighted
Least Squares” by Fessler [20]. We note that this is one of the few methods that
have been in routine use4.

Generally, linear methods satisfies the requirements in sec. 5.1 much better than
statistical reconstruction methods. However, this comes at the prize of less accu-
rate models:

• Concentrations may be negative.

• The discrete nature of the count-statistics can not be modeled.

This author believes that linear methods are easier to get adopted for clinical use
than statistical methods, despite their shortcomings. Hence, the remaining part of
the thesis will focus entirely on these methods. Chapter 6 deals with the issue of
accuracy.

5.5 Regularized reconstruction

It should be evident from chapter 4 that any reconstruction method must suppress
noise to create useful images. In general, this field is known asregularizationand
is important in many disciplines, e.g. seismology, astronomy, and signal process-
ing to name a few [30].

As described above, the goal is to compute an approximate solution resulting in
homogeneous Gaussian PSFs. In the litterature, this is known asmollifier meth-
ods, and we can use an algorithm from chapter 4 to achieve this: first compute
a solution using FBP (ωc = 1 and no window) and apply a post-filter with a
Gaussian kernel. If a more accurate solution is required, FBP may be used as a
pre-conditioner in an iterative method (see p. 41).

4Adopted for routine use in cardiac scans at the University of Michigan Medical Center [21].
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This offer only a small advantage over FBP, since the resolution is basically lim-
ited in the same way. However, the literature offers plenty of alternatives to post-
filtering. Thus, we may use a post-filter (to imitate FBP), and increase the resolu-
tion but avoid excessive noise using regularization.

This appears like a nearly ideal way to deal with the requirements from the users.
This is particularly true if the amount of post- and regularization-filter can be
changed in real-time while the user is trying different settings. This is the method
pursued in the remaining part of the thesis.

Standard regularization
∫∫∫

There are many standard regularization-schemes that can be expressed in terms
of thesingular value decomposition(SVD). The SVD of the system-matrixA is
given by:

(5.1) A = UΣVH

HereU andV have orthonormal columns, i.e.UHU = VHV = I (this variant is
known as thethin SVD), andΣ is a square diagonal matrix with real, non-negative
elements on the diagonal.

With this definition, the regularization schemes considered in this thesis may be
written in terms offilter-factors[30]:

(5.2) A† =
∑

i:σi>0

fi

σi
viu

H
i

Herefi are the filter-factors, which can usually be specified as a functionfi =
f(σi). A few examples are given in tab. 5.1, although we shall not go further into
the specific merits of these choices. The pseudo-inverse is as close to an inverse
of A as possible. All remaining filters share the property thatfi ≈ 1 for σi � λ,
while fi ≈ 0 for σi � λ. The parameterλ plays the same role as the cut-off
frequency,ωc, did in the FBP studied in sec. 4.4 p. 38.

Name Filter-function
Pseudo-inverse f(σ) = 1
Tikhonov f(σ) = σ2

σ2+λ2

Truncated SVD (TSVD) f(σ) =

{
1 for σ ≥ λ,

0 otherwise.

Rutishauser f(σ) = σ2

σ2+λ2+λ2/(σ2+λ2)

Damped SVD f(σ) = σ
σ+λ

Table 5.1:
Example of filter-
factors studied in
the literature [30].

Tikhonov regularization
∫∫∫

Apart from the pseudo-inverse, which is not ordinarily regarded as a form of reg-
ularization, by far the most studied method is Tikhonov regularization. It can be
shown that the the Tikhonov solution,x̂ = A†b, of the linear systemAx̂ ≈ b is
equivalent to the following optimization problem [30]:

(5.3) x̂ = argmin
x̂

(
‖Ax̂− b‖22 + λ2‖x̂‖22

)
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Thus, the solution attempts to keep the residual error,Ax̂− b small in norm, but
adds a penalty to discourage solutions with large norms.

In a statistical setting, Tikhonov regularization is known asridge regression[52].
If Ax = b+e, where the elements in the noise-vectore are uncorrelated random
variables with zero mean but the same variance,s2 < ∞, then there is a regular-
ization parameter,λ, where the mean-square-error,E

{
‖x̂− x‖22

}
, is less than the

unregularized solution [43].

Tikhonov regularization may also be derived using a Bayesian approach. The reg-
ularized solution,̂x, is a maximum a posteriori estimate, assuming the elements
of x has expected zero mean and variances2/λ [43].

Finally, it can be shown that among the methods that can be defined in terms of
filter-factors, the choice that minimizesE

{
‖x̂− x‖22

}
is given by [30]:

(5.4) fi =
σ2

i

σ2
i + s2/(vT

i x)2

Sincex is unknown, we can only estimate the term in the denominator. Gener-
ally, using Tikhonov as an approximation is justified in tomography where the
achievable resolution is low compared to the band-width of the object.

All derivations of Tikhonov regularization are based on the assumption that the
elements ine have the same variance. However, if the variance can be estimated,
then we may instead use theweighted least-squaresestimate:

(5.5) x̂ = argmin
x̂

(
‖WAx̂−Wb‖22 + λ2‖x̂‖22

)
HereW is a diagonal matrix where the elementW(i,i) is the inverse of the ap-
proximated standard deviation ofei. This function is the subject of chapter 6, and
leads to a quasi-linear algorithm.

Another common variation of Tikhonov regularization is to change the penalty-
term ‖x̂‖2 to ‖Lx̂‖2, whereL is typically a discrete approximation of, say, the
Laplace operator. However, in the current context this approach has several dis-
advantages:

• It introduces spatially correlated artifacts.

• The PSFs becomes dissimilar to Gaussian kernels.

• The form of L must be justified from autoradiographic studies for each
tracer, and such validation studies are extremely scarce.

For these reasons, we shall not use these methods, but instead rely on post-
filtering.

Model mismatch
∫∫∫

One convincing reason to use regularization methods based on filter-factors is
their ability to reject model-mismatch. This stems from the fact that the scanner-
model can be regarded as a perturbation of the true scanner, and we may therefore
use results from perturbation-theory of the SVD to establish bounds on this error.
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Several key results are, for other reasons, included in appendix C: Ostrowski’s
theorem (theorem C3 p. 147) states that multiplicative factors will at most change
the singular values by the factors themselves. Thus, an inaccurate calibration of
the photo-multiplier tubes or the absence of an attenuation model, will not change
the singular values significantly.

Weyl’s theorem (theorem C1 p. 147) takes care of the remaining errors, although
somewhat less convincingly.

The reconstructed image depends not only on the singular values, but also singu-
lar vectors. A rigorous treatment depends on angles between subspaces, but the
main result is that these are not severely affected by small perturbations. Thus, if
we use a reconstruction method where the filter-factors do not change too rapidly,
then we can expect that the reconstructed image is not detrimentally affected by
the model mismatch.

We note that considerations of model-mismatch is very uncommon in the recon-
struction literature [22].

5.6 Incorporating anatomy

There are two principal ways to use anatomy in reconstruction:

1. Build a prior, using probability- or information-theory, and apply a statisti-
cal reconstruction algorithm.

2. Impose constraints on the reconstructed image during the reconstruction.

As discussed in sec. 5.3, statistical methods relies on information that is difficult to
convey accurately to non-technical users. This issue is made even more difficult
when we add the requirement that the user must be able to control the process,
including turning it off in different parts of the image.

This leads us to consider the second approach. We note that the idea of restricting
the images was proposed at least as early as 1984 in one of the most cited papers
on the EM-algorithm [45, p. 309]:

Certain equality constraints also become trivial to implement in the
above framework.

. . .

Neighboring pixels can be forced to have the same intensities.

The paper also mentions the simplicity of incorporating areas known to be zero.
One way to accomplish this is to set the initial iterate to zero, although this scheme
must be modified if a convolutive sieve is used.

Using restrictions to incorporate anatomical knowledge has the attractive prop-
erty that it is easy to visualize: a simple sketch of the constant regions suffice. It
also has the advantage that many workflows used clinically already depends on
identifying regions. Therefore the approach can be used together with familiar
tools.
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Anatomy and regularization
∫∫∫

If we know that some pixels inx are zero, then we may create an operator,P,
that zero out pixels known to be zero. Similarly, we may letP be an operator that
averages all pixels in one or more disjoint regions.

To be specific, let all pixels be categorized intoK disjoint regions, many possibly
containing a single pixel. Letpk be a vector with one element per pixel, and let
an element be1 if a pixel belonging to regionk and zero otherwise. We may then
write P as follows:

(5.6) P =
K∑

k=1

(
pkp

T
k

)/(
pT

k pk

)
It follows immediately thatP = PT. Since all regions are assumed to be disjoint
we havepT

i pj = 0 for i 6= j, and we get:

PP =

(
K∑

k1=1

(
pk1p

T
k1

)/(
pT

k1pk1

))( K∑
k2=1

(
pk2p

T
k2

)/(
pT

k2pk2

))

=
K∑

k1=1

K∑
k2=1

(
pk1p

T
k1pk2p

T
k2

)/(
pT

k1pk1p
T
k2pk2

)
=

K∑
k=1

(
pkp

T
k pkp

T
k

)/(
pT

k pkp
T
k pk

)
=

K∑
k=1

(
pkp

T
k

)/(
pT

k pk

)
= P

Thus,P is anorthogonal projector[73]. In any case we havex = Px, sinceP
does not change an image that satisfies the specified restrictions. Thus we may
compute a regularized solution to the following system:

(5.7) APx̂ ≈ b

If we let AP = UΣVT be an SVD where only non-zero singular values are
retained, then we havêx ∈ range(V) ⊆ range(PT) = range(P). Thus, the
solution produced by any regularized method described in sec. 5.5 will automati-
cally satisfy the specified constraints.

5.7 References

The user-requirements in sec. 5.1 are rarely treated in the literature, except at
commercial websites. As the author did not have access to their software, these
websites can not be endorsed by giving references.

Anyone depending on the computational progress should be aware of the ITRS:
International Technology Roadmap for Semiconductors [62, 63]. This organiza-
tion produces high-quality reports with facts-based predictions.

Statistical reconstruction is a very active area of research. For a small sample we
refer to the references given in sec. 5.3. Apart from pointing at a single review
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[22], the best advice for those who wants to get into the field is to study the papers
by Jeffrey A. Fessler.

Regularization of linear systems is standard material, which is covered in many
places. However, in the setting of linear algebra (as opposed to more general
Hilbert spaces), the place one should turn first is the doctoral thesis by Per Chris-
tian Hansen [30].

Projectors are described in many text-books on linear algebra, e.g. [71]. Another
excellent reference is [73], which also use projectors in a numerical setting.
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6 Weighted least-squares
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Chapter 5 described a number of advantages of linear and quasi-linear reconstruc-
tion methods. However, one area where it lacked behind statistical methods was
in quantitative accuracy. This chapter analyzes this behavior, and establish bounds
on the difference between a simple weighted least-squares objective and a proper
model of Poisson noise.

This study considers a broad class of reconstruction algorithms, and analyzes
the worst-case behavior when a least-squares objective replaces a Poisson log-
likelihood. We derive a bound on the Hausdorff-distance, in sinogram space, and
compare it with statistical noise.

We show that in many circumstances a broad class of reconstruction algorithms
can be expected to produce similar images using either objective. For rigor, we
give a bound in the important special case where the penalty-function (or log-
prior) is itself a weighted least-squares objective.

This chapter is mathematically oriented.

6.1 Chapter overview

Most reconstruction algorithms can be stated as an optimization-problem of a
function that contains a term that models the scanning process and a term that
models an a priori knowledge or, equivalently, penalizes undesired images.

We consider a scanner that produces Poisson-distributed counts, and analyze the
solutions when the Poisson log-likelihood is replaced with two different least-
squares objectives. We bound the distance between solutions of equal likelihood
and show that the reconstructed images should be similar in many circumstances.
In the important special case, where both the log-likelihood and penalty-function
(or log-prior) are weighted least-squares objectives, we give a rigorous bound.

Most studies evaluate a likelihood function as a part of a reconstruction process.
The goal in this chapter is to isolate the effect of the likelihood function, and make
as few assumptions as possible. To the best knowledge of the author, no previous
work have established bounds that applies as generally as those presented here.

Methods

First, the likelihood functions considered are introduced in sec. 6.2. The LS-
error is seen as an approximation to the Poisson log-likelihood, and objectives
for weighted LS (WLS) and model-weighted LS (MLS) schemes are derived in
sec. 6.3 and 6.4.

Next, sec. 6.5 introduces a generalized view of regularized reconstruction algo-
rithms. We consider iso-surfaces of the likelihood-functions, and define the Haus-
dorff distance between such surfaces. We show that small distances between such
surfaces result in similar reconstructed images.
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The bound obtained will in general depend on the level of regularization, and
sec. 6.7 considers the statistical distribution of the Poisson log-likelihood. This
leads to a range of practical threshold values for the log-likelihood.

Section 6.8 analyzes the WLS-scheme, and derives a bound on the distance be-
tween the likelihood surfaces. This bound is compared with the inherent statistical
variation of a Poisson process.

Finally, sec. 6.9 analyzes the model-weighted LS scheme. Since the WLS-scheme
is too simple to encompass regions with very few counts, the new relative bound
is given. This demonstrates that the Poisson-likelihood and WLS-objective differ
mainly by the quality of the variance estimates.

6.2 Likelihood functions

The acquisition process in emission tomography is inherently statistical, and is
described in chapter 3. We shall assume that the system matrixA ∈ RM×N maps
N pixels intoM sinogram bins.

It is assumed the components ofb are independent and Poisson-distributed with
parameters given byλ = Ax, wherex is the true object in the scanner. The like-
lihood ofλ can therefore be derived from the Poisson-distribution as described in
sec. 3.8 p. 30:

(6.1) LP(λ,b) =
M∏
i=1

e−λiλbi
i /bi!

We do not consider the likelihood functions directly. Since the projections inb are
independent stochastic variables, it is easier to work with the log-likelihood. The
functions considered peak atλ = b, and we subtract this peak to get non-positive
values.

The Gaussian likelihood resulting in least-squares problems is given by [52]:

LLS(λ,b) =
e−

1
2 (b−λ)TΣ−1(b−λ)√

det(2πΣ)

whereΣ = diag(
[
σ2

1 . . . σ2
M

]
).

Briefly postponing the estimation ofσ2
i , we may now define the log-likelihood

functions. For convenience define0 ln(0) = 0 as a compound symbol and get:

`P(λ,b) = ln
(
LP(λ,b)

)
− ln

(
LP(b,b)

)
=

M∑
i=1

(
bi − λi + bi ln(λi)− bi ln(bi)

)
(6.2)

`LS(λ,b) = ln
(
LLS(λ,b)

)
− ln

(
LLS(b,b)

)
=

M∑
i=1

− (λi − bi)2

2σ2
i

(6.3)

It will be necessary to distinguish between solutions associated with different
likelihood functions. In this chapter, a hat decorates quantities that involve the
Poisson-likelihood (e.g.̂λ andx̂).
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6.3 Weighted least-squares

If the variances are estimated directly from the measured sinogram, maximizing
`LS becomes a weighted least-squares (WLS) problem. Quantities will be deco-
rated with an inverted hat, e.g.λ̌.

In the simplest case, the approximation is restricted to estimateσ2
i from a single

projection, i.e.bi. This represents a worst-case scenario with no smoothing in the
sinogram, but have the advantage that no assumptions are required fromA or x.

Expanding a single term of eq. (6.2) aroundλi = bi gives:

(6.4) `P(λi, bi) ≈ − (λi − bi)2

2bi
+

(λi − bi)3

3b2
i

− (λi − bi)4

4b3
i

+ · · ·

Choosingσ2
i = bi makes the first term equal to eq. (6.3), but can not be used for

bi = 0. The analysis is based on the limitσ2
i → 0+, which effectively enforces

λi = bi = 0. Since`P(0, 0) = 0, we also definèWLS(0, 0) = 0 and may now
write the WLS-objective in the following form:

(6.5) `WLS(λ,b) =
M∑
i=1
bi 6=0

− (λi − bi)2

2bi
, λi = 0 for bi = 0.

In practical methods, such as penalized weighted least-squares (PWLS),σ2
i is es-

timated by filtering over the sinogram and considering detector efficiencies, dead-
time correction, and transmission errors among other factors [20]. We therefore
expect the analysis based on this function to be much worse than that encountered
in practice, in particular for regions with very few counts.

6.4 Model-weighted least-squares

If the variances are allowed to depend on the estimated parameters, i.e.σ2
i =

g(λi), we get a model-weighted least-squares (MLS) problem. Quantities are
decorated with a tilde, e.g.̃λ.

Although the MLS-problem is essentially as hard to optimize as the Poisson like-
lihood [22], it is of theoretical interest for several reasons. First, the analysis
explains the behavior when a good approximation of the variance is available.
Also, it helps to explain the behavior of the Poisson-likelihood in the region very
near the measured sinogram whereλ̃ ≈ b.

Insertingσ2
i = g(λi) in eq. (6.3) and expanding yields:

`MLS(λi, bi) ≈−
(λi − bi)2

2g(bi)
+

(λi − bi)3g′(bi)
2g(bi)2

+
(λi − bi)4

4

(
g′′(bi)
g(bi)2

− 2
g′(bi)2

g(bi)3

)
+ · · ·

Settingσ2
i = g(λi) = λi reproduces the first term in eq. (6.4), while the error

in the second term is−(λi − bi)3/(6b2
i ), i.e. half that of̀ WLS in absolute value.

Thus,`MLS is much better thaǹWLS near the peakλi ≈ bi for this choice ofσ2
i .
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For our purpose, with emphasis on low-count regions, a more interesting situa-
tion is the caseλi � bi and especiallybi = 0. Therefore we want the ratio
`MLS(λi, 0)/`P(λi, 0) = λi/

(
2g(λi)

)
to be1. It follows thatσ2

i = g(λi) = λi/2.

The two equations differ only by a constant factor. From an algorithmic point
of view, this corresponds to different choices of the regularization parameter dis-
cussed in sec. 6.5. All further analysis will be based on the latter:

(6.6) `MLS(λ,b) =
M∑
i=1

− (λi − bi)2

λi

6.5 General reconstruction

As shown in chapter 4, the maximum-likelihood solution is rarely desirable, un-
less the spatial sampling is very crude. Instead, we search a smoother solution
that strikes a balance between likelihood and other desirable features.

Most methods can be written in the form of an optimization problem.

(Optimized reconstruction) Let `(Ax̂,b) be a log-likelihood function (e.g.̀PDefinition 6.1:
or `WLS) modeling the scanner acquisition, letr(x̂) be a non-negative convex
penalty-function, and letα be a regularization constant.

Furthermore, define the following function:

f(x̂,b) = `P(Ax̂,b)− αr(x̂)

Then anoptimizing reconstruction algorithmcomputes the following image over
a convex setS:

x̂ = argmax
x̂∈S

f(x̂,b)

The functionr(x̂) is either a penalty or log-prior depending on the philosophy
and derivation of the method. Often the regularization parameter,α, is considered
separately. Althoughα may be determined indirectly (e.g. by early stopping as
described in sec. 4.7 p. 45), its function is to determine how large`P(Ax̂,b) must
be before a solution is acceptable.

Conversely, we may view the reconstruction as the process of maximizing the
penalty-function over the iso-surface`P(Ax̂,b) = k. If `LS approximates̀ P

well, then the solution̂x should havèLS(Ax̂,b) ≈ k.

From an algorithmic point of view, fixingk instead ofα is often the goal. If
`WLS is combined with a weighted least-squares penalty-function, this strategy is
known as the discrepancy principle [30].

A similar view was advocated by Veklerov and Llacer [76], who used the notion
of feasibility shellto determine an appropiate sieve for the EM-algorithm. The
shell corresponds to iso-surfaces for a small range ofk, and the appropiate sieve
is essentially equivalent to a fixed value ofk.
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6.6 Hausdorff distance

To fix ideas we present a reduced example. Let the system matrixA project two
voxels (N = 2) onto a two-element sinogram (M = 2). Define the penalty-
function asr(x) = ‖x‖22 and assume we have measured the sinogramb:

A =
[
0.30 0.50
0.28 0.70

]
b =

[
5
2

]

Fig. 6.1 shows iso-curves of the likelihood- and penalty functions. The log-
likelihood is set atk = −0.58 · 2, a choice discussed in sec. 6.7. The enlargement
on the right shows the distance from each solution to the nearest point on the
opposite surface.

Iso−surfaces of likelihood functions
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Figure 6.1:
Iso-surfaces of the
likelihood- and the
penalty-functions
in sinogram-space,
the maximum dis-
tance D, and so-
lutions. The en-
largement shows
the solutions and
their minimal dis-
placement to the
opposite surface.

Our approach will be to bound the distance between the surfaces in sinogram
space. To make the statement precise, take‖ · ‖ to be an unspecified norm, and
define the distanceD as the maximum displacement from one surface to another:

D1→2 = max
λ1∈S1

min
λ2∈S2

‖λ1 − λ2‖

D2→1 = max
λ2∈S2

min
λ1∈S1

‖λ1 − λ2‖

D = max{D1→2, D2→1}(6.7)

The surfaces are the iso-surfaces of the likelihood-functions and depend on the
threshold-valuek. Although the displacementsD1→2 andD2→1 were identical
in the example, it is generally necessary to consider them separately.

The distanceD is called the Hausdorff-distance betweenS1 andS2 with respect
to the given norm [1]. It is named after Felix Hausdorff, who showed thatD

is a distance, andD1→2 andD2→1 are metrics.D is sometimes known as the
“undirected Hausdorff distance”.

Implications in image-space

Bounds onD are useful because they have consequences in image-space. The dis-
tance between the solutions in fig. 6.1 are larger thanD only because the penalty
differ less between the solutions than the opposite points. This must be the case
since, by definition, the solutions found on each surface have the lowest penalty.
In other words, the LS-solution is better (measured by the penalty-function) than
the Poisson-solution perturbed at mostD in the sinogram.
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Consider the difference, in image-space, between the solutions above measured
in the 2-norm, i.e. the penalty function. The transformation (the inverse ofA)
squeezes the penalty-curves into circles. Replacing the Poisson-surface with an
LS-surface caused a smaller change in the penalty-function than any of the dis-
placements.

To emphasize this point, fig. 6.2 shows LS-surfaces that arise from small pertur-
bations ofb. All these surfaces must result in similar images in image-space,
because they represent the same object perturbed by statistical noise. It should
be evident that in general, any surface embedded in the “cloud” should result in
similar images.

LS−surfaces perturbed by noise

1 2 3 4 5 6 7 8 9

1

2

3

4

λ
1

λ
2

•
•••

•
• • •

•

Figure 6.2:
Cloud of LS-
surfaces resulting
from perturbing b.

In the important special case where the penalty-function is on the formr(x) =
‖Lx‖22, theorem A2 in appendix A shows that under mild assumptions there are
images satisfying the relationr(x̂− x̌1) + r(x̂− x̌2) ≤ r(x̌2)− r(x̌1) for some
WLS-reconstructed images,x̌1 andx̌2.

These solutions must, by definition, minimize the penalty-function on some sur-
faces in the cloud. If we can guarantee that all surfaces result in similar images,
by boundingD, then it follows that the reconstructed image is near the image
reconstructed using the Poisson surface.

In the general case this result must be weakened. Section A2 outlines a proof that
any vectordλ have adb so that`WLS(λ̂ + dλ,b) = `WLS(λ̂,b − db) where
(db)i = ci(dλ)i, |ci| < 1 +

√
2 < 2.42. This ensures that ifD is small, compared

to the statistical noise ofb, the Poisson-surface will be embedded in the cloud.
Thus, the images reconstructed using the Poisson-surface and the WLS-surface
can only vary greatly, if the images reconstructed using the Poisson-surface is
sensitive to statistical noise.

Non-negativity

The distance bounds apply unmodified for algorithms that enforce non-negativity
in the image-space. To see this, observe that such an algorithm must be able to
choose a solution on the boundary of the non-negative set.

Since the non-negative vectors in image-space form a convex set, so do the set
in sinogram-space after a linear transformation. The iso-surfaces treated in this
section are therefore cut so they lie inside this convex set. However, the distance
between two surfaces modified in this way can never exceed that of the original
surfaces. If the original opposite point has been removed, then there must be a
closer one lying on the surface of the non-negative set.
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6.7 Log-likelihood range

Before comparing the likelihood functions we will start by determining the range
of likelihood-thresholds that is useful in practice. To this end, consider the distri-
bution of`P(λ,b) as a stochastic variable whenλ is fixed.

Since the total log-likelihood̀P(λ,b) =
∑M

i=1 `P(λi, bi) is a sum of many inde-
pendent terms, it should have a nearly Gaussian distribution. Fig. 6.3 shows the
negated mean and variance for a single term.
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Figure 6.3:
Mean and vari-
ance of the Poisson
log-likelihood as a
function of the true
parameter λi. The
mean is negated for
illustrative conve-
nience. Both are
bounded, implying
a limited range of
useful values of the
log-likelihood.

Mean and variance

By definition, the mean log-likelihood of a projection is:

E {`P(λi, bi)} =
∞∑

bi=0

e−λiλbi
i

bi!
`P(λi, bi)

=
∞∑

bi=0

e−λiλbi
i

bi!
(
λi ln(λi)− bi ln(bi)

)

One important point is thatE {`P(λi, bi)} ≥ −0.5802. This gives a lower bound
of the mean,irrespectiveof the unknown parameterλi. Similarly, the variance is
bounded above byvar

(
`P(λi, bi)

)
< 0.6015 and asymptotically becomes1/2 for

λi →∞.

Likelihood threshold

As mentioned we expect that`P(λ,b) has a nearly Gaussian distribution. Com-
bining this with the result above, it follows that the thresholdk = −0.5802M

should givè P(λ,b) > k at least50% of the time for the trueλ.

Settingk = −0.5802M(1 + ε) adds a confidence interval, whereε represents a
few standard deviations. Since the variance was bounded, it follows thatε de-
creases as1/

√
M . UsuallyM is sufficiently large thatε can safely be ignored.

For k much lower than−0.5802M , we accept solutions,̂x, significantly less
likely to produce the measured sinogram,b, than the true concentrationx. Usu-
ally k should be higher, especially if there are many low-count projections (λi <

1) as is often the case for real scans.
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6.8 Analysis of weighted least-squares

Let λ̂ andλ̌ be regularized solutions obtained using the Poisson likelihood and
the WLS-likelihood respectively. These are called primary estimates.

We now have to find a displacement vector from each primary estimate to the
opposite surface (see fig. 6.1 in sec. 6.5.) We want to bound a norm of these
displacement vectors.

Consider replacing each component with a new value that matches the likelihood
of the opposite surface. The displacement always overestimates the distance de-
fined in eq. (6.7).

For instance, letS1 =
{
λ̂
∣∣`P(λ̂,b) = k

}
andS2 =

{
λ̌
∣∣`WLS(λ̌,b) = k

}
. Now

replace each component of̂λ with a suitable entry sǒλ
∗

satisfies`P(λ̂,b) =
`WLS(λ̌

∗
,b). Finally, an upper bound on‖λ̂− λ̌

∗‖ must also be an upper bound
onD1→2.

Surface distance bound

First, assume that the primary Poisson-estimate is given. Equating terms in eq.
(6.3) and eq. (6.5) and solving for the parameter yields:

(6.8) λ̌∗i = bi + sgn(λ̂i − bi)
√
−2bi`P(λ̂i, bi)

Plotting∆i/`P(λ̂i, bi), where∆i = λ̌∗i − λ̂i, reveals an important property of the
displacement:̀ P(λ̂i, bi) ≤ ∆i ≤ 0. Fig. 6.4 shows onlybi = 0 andbi = 1, since
for bi 6= 1 the displacement is a function ofλi/bi. Thus, forbi ≥ 1 one should
read theλ-axis asλi/bi and use the curve forbi = 1.
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Figure 6.4:
Relative displace-
ment for equat-
ing a single term
of the likelihood-
functions. Solid:
primary estimate
on the Poisson-
surface (undefined
for λi ≤ 0).
Dashed: relative
displacement from
a primary estimate
on the LS-surface.

Using the observation above and summing over all projections immediately gives
the bound: ∥∥λ̌∗ − λ̂

∥∥
1
≤ −`P(λ̂,b) = −`WLS(λ̌

∗
,b)

Analogously, equating terms in eq. (6.3) and eq. (6.6) bounds the displacement
from a point on the LS-surface. The dashed curve in fig. 6.4 shows the result, but
it is necessary to solve for̂λ∗i numerically. The same argument as before applies,
and we obtain: ∥∥λ̌− λ̂

∗∥∥
1
≤ −`P(λ̂

∗
,b) = −`WLS(λ̌,b)
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It is convenient to combine the equations into a single equation, without specify-
ing the primary surface:

(6.9)
∥∥λ̌− λ̂

∥∥
1
≤ D ≤ −`P(λ̂,b) = −`WLS(λ̌,b) = −k

Comparison with noise

Whether the bound given in eq. (6.9) is acceptable depends on the norm ofb
and the remaining errors. Since‖b‖1 is the total number of counts, the result in
sec. 6.7 suggests that the error is negligible if‖b‖1 � 0.58M , whereM again
represents the number of projections. However, to be quantitative we can compare
the bound onD with the statistical fluctuationE {‖b− λ‖1}, whereλ = Ax is
a true (unknown) fixed parameter vector.

The fluctuation can be arbitrarily small whenλ ≈ 0, but then the log-likelihood
threshold should also be close to zero. We assume that the reconstruction is con-
sistent in the sense that`P(λ̂,b) ≥ E {`P(λ,b)} (1+ε), where the last expectation
is overb andε is small (see sec. 6.7.) It now follows from eq. (6.9):

(6.10) q =

∥∥λ̌− λ̂
∥∥

1

E
{∥∥b− λ

∥∥
1

} ≤ −`P(λ̂,b)
E
{∥∥b− λ

∥∥
1

} ≤ (1 + ε)
∑M

i=1 E {−`P(λi, bi)}∑M
i=1 E {|bi − λi|}

The worst case occurs forλi = ‖b‖1/M , shown in fig. 6.5, which gives:

(6.11) q ≤ E {−`P(λi, bi)} /E {|bi − λi|}
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Figure 6.5:
Ratio between
displacement-
bound and statisti-
cal variation for the
worst-case scenario
λi = ‖b‖1/M .

The displacement becomes larger than the fluctuation whenλi is very small. Nev-
ertheless, ifλi is large for somei, the terms associated with very smallλi have
little effect on the fraction in eq. (6.10). Break-even happens aroundλi ≈ 0.2464.
We conclude that unless the majority of projections have an expected value less
than0.25, then the perturbation of the surface made by replacing the Poisson like-
lihood with the WLS-likelihood is no larger than what should be expected from
statistical noise.

6.9 Analysis of model-weighted least-squares

The MLS-objective, defined by eq. (6.6), uses an improved estimate of the vari-
ance. This function equals the Poisson-function forbi = 0, and it suffices to study
bi > 0.
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Relative displace-
ment between sur-
faces for bi > 0
where the dashed
curve is from LS
to Poisson, i.e. s̃i,
and the solid curve
is Poisson to LS,
i.e. ŝi. The relative
displacement is
less than 0.42.

Consider the relative displacementsŝi = (λ̂i − λ̃i)/(λ̂i − bi) and s̃i = (λ̂i −
λ̃i)/(λ̃i − bi). Fig. 6.6 shows botĥsi ands̃i as functions ofλi/bi, and again the
displacements are bounded.

The observation from fig. 6.6 leads to another bound. Writingλ̃
∗

= λ̂ + e or
λ̂
∗

= λ̃ − e we have0 ≤ ei < 0.42bi. Thus,‖e‖ = ‖λ̃ − λ̂‖ < 0.42‖λ̂ − b‖
measured in any norm.

We conclude that the iso-surfaces are relatively close, in the sense that if the
Poisson-surface is close to the measured sinogram, then the distance to the MLS-
surface is not much further away. This result holds for any choice of likelihood
threshold and any subset of projections.

6.10 Summary of the analysis

This chapter analyzed the consequences of replacing a Poisson-likelihood with a
Gaussian likelihood. Two simple least-squares objectives were defined as approx-
imations to the Poisson log-likelihood.

We bounded the Hausdorff-distance between the Poisson- and LS-likelihood sur-
faces in sinogram-space. It was shown that exchanging the Poisson-likelihood
with a WLS-objective perturbed the surface less than the expected statistical noise
in regions with more than about0.25 average counts per projection. A model-
weighted LS-objective always generated solutions with a bounded relatively dis-
tance between the Poisson-solution.

We argued that perturbing the likelihood-surfaces less than the expected statistical
noise implies that the reconstructed images are similar in image-space. This was
prooved rigorously in the case of Tikhonov-regularization.

The analysis derived loose upper bounds of a worst-case analysis of a greatly
simplified scenario. No statistical cancellation was introduced to improve the
least-squares errors, and the weighted LS-scheme was restricted to estimating the
variance from a single projection. It is surprising that a scheme that simple can
achieve any degree of accuracy in areas with fractional average counts.

Even though no proof can be given that applies generally to all penalty-functions,
there is ample reason to believe that weighted LS-objectives form very good ap-
proximations to the Poisson log-likelihood under practical circumstances. The
model-weighted least-squares objective demonstrated that the main reason the
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Poisson-likelihood do better in regions with very few counts is the ability to esti-
mate fractional variances more than the particular form of the likelihood.

An important consequence is that there is sound theoretical justification for apply-
ing the tools in linear algebra to the problem of reconstructing Poisson-sources.
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This chapter develops a framework for computing the singular value decomposi-
tion. The algorithms are based on matrix-vector products, and operates on parts
of the SVD, i.e. without requiring a full SVD to reside in memory at a single time.

The framework consists of a number of building-blocks, or modules. To put this
in context, we show how several traditional algorithms can be expressed in terms
of these modules. For generality, we allow any operator to be complex.

All chapters in this part are mathematically or algorithmically oriented.

7.1 Partial SVD

The goal of this chapter is to develop modules for approximating the SVD of a
matrix,A, without formingA explicitly. We will only access the matrix through
matrix-vector multiplications byA andAH, since these operations are often the
only practical operations in large-scale problems.

In large-scale problems the SVD must be defined without needing all vectors si-
multaneously. One way to do this is to define asingular triplet.

(Singular triplet) A singular triplet(ui,vi, σi) of a matrix,A ∈ Cm×n, con-Definition 7.1:
sists of two unit vectors,ui ∈ Cm×1 and vi ∈ Cn×1, and a scalar,σi, which
satisfies the equations:

Avi = σiui(7.1a)

AHui = σ∗i vi(7.1b)

For brevity the term “singular” may be dropped when the context is clear. An
exact (singular) tripletsatisfies these relations exactly. In contrast anumerical
(singular) triplet only satisfiesAvi ≈ σiui andAHui ≈ σ∗i vi. We refer to
sec. C6 p. 151 in the appendix for more details about singular triplets.

We will say that two singular triplets aremutually orthogonalif their singular
vectors are orthogonal, i.e.vH

n vm = uH
num = 0 for n 6= m. Again the term

“mutual” may be dropped, andnumerically orthogonaltriplets only have approx-
imately orthogonal singular vectors.

It is often advantageous to work on a number of singular triplets at a time. This is
most conveniently done by collecting the singular triplets in matrices:

U =
[
u1, u2, · · ·

]
B = diag(σ1, σ2, · · · ) V =

[
v1, v2, · · ·

]
We shall refer to a collection of orthogonal singular triplets as apartial SVD
(PSVD). For reference, we give a formal defintion of the partial SVD.
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(Partial SVD) A size-k PSVD of a matrixA ∈ Cm×n is a triplet of matrices,Definition 7.2:
(U,V,B), whereU ∈ Cm×k andV ∈ Cn×k. AlsoUHU = I andVHV = I
and finally the following equations must be satisfied:

AV = UB(7.2a)

AHU = VBH(7.2b)

Numerical Partial SVD (NPSVD)

A PSVD is either exact or numeric, depending on whether the triplets are exact
or numeric. Exact triplets with distinct singular values are always orthogonal (see
theorem C14 on p. 152).

Unlike exact triplets, numerical triplets are not automatically mutually orthogo-
nal, and it is necessary to include an error-term in the form of a residual. This
leads to the Numerical Partial SVD (NPSVD), which is defined in the box.

To keep the correspondence between individual triplets the matrixB̂ must be
square. Note that some texts include part of the residual intoÛ or V̂ instead.

Numerical Partial SVD (NPSVD)
A size-k NPSVD of a matrixA ∈ Cm×n is a triplet of matrices,(Û, V̂, B̂),
and residuals,EU ∈ Cm×k andEV ∈ Cn×k, whereÛ ∈ Cm×k, V̂ ∈
Cn×k, andB̂ ∈ Ck×k.
The matrices are related by the defining equations:

AV̂ , ÛB̂ + EU(7.3a)

AHÛ , V̂B̂H + EV(7.3b)

There must be a known constant,εo < 1, such that the columns of̂U andV̂
satisfies1− εo ≤ ‖ûi‖2 ≤ 1 + εo and1− εo ≤ ‖v̂i‖2 ≤ 1 + εo.
If B̂ is diagonal andεo � 1, then the columns of̂U andV̂ approximates
the left and right singular vectors, while the entries inB̂ approximates the
singular values.

Ideally,ÛHÛ = I, V̂HV̂ = I, andB̂ consist of a diagonal of real, non-negative
entries. In this case the columns ofÛ andV̂ approximates left and right singular
vectors and the diagonal of̂B approximates the singular values. The quality of
these approximations depends on the residual norms,‖EU‖ and‖EV‖. If the
norms are zero the triplets are exact.

For the purpose of numerical software, we will not require thatB̂ is diagonal
(this is why we usêB instead ofΣ̂). It will be shown in sec. 7.2 that we may
diagonalizeB̂ when needed.

As an aid to explain the theoretical background of the algorithms, it is helpful
to name the quantities involved in an NPSVD. We shall use the terms shown in
table 7.1. For brevity theresidual matricesmay be referred to as residuals if the
context is clear.

Numerical considerations
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Quantity Term

B̂ Coupling matrix
Û, V̂ Left and right singular matrices

EU, EV Left and right residual matrices

Table 7.1:
Terminology used
in the descriptions.

The goal is to develop numerically robust software that improves an NPSVD iter-
atively in a way that drives the residual norms to zero. Just as it is preferable to
allow the coupling-matrix to be on a non-diagonal form, it is also preferable not
to require that̂U andV̂ have orthogonal columns.

In spite of these relaxations, it is convenient to think of the NPSVD as an approx-
imation of a partial SVD. However, we will be careful to note when a derived
quantity relies on a particular property of the singular matrices or the coupling
matrix.

The NPSVD is given as a definition wherêU, V̂, andB̂ usually represents com-
puted quantities (and are decorated with a hat). The residuals,EU andEV, are
known only through eq. 7.3 and absorbs the rounding errors.

The chapter derives a number of modules that transform an NPSVD. We use the
term module, because “update” (and its analogue sometimes known as “down-
date”) have traditional meanings. Notationally, we will decorate quantities of a
transformed NPSVD with tildes, i.e.̃U, Ṽ, B̃, ẼU, andẼV.

Interpretation

It is helpful to have an intuitive understanding of the NPSVD, which may be
attained by considering a specific problem. In scanner terminologyrange(Û)
represents a space of sinograms andrange(V̂) represents a space of objects, i.e.
brains in neurology.

When an object is put into the scanner, its emission concentration may be approx-
imated by a vector inv ∈ range(V̂). This (approximated) object may then be
projected to the sinogram as the matrix-vector productu = Av.

If the residuals in the NPSVD are known, then this multiplication which projects
v into the sinogramu, can be done using the NPSVD as illustrated1 in fig. 7.1.

NPSVD subspaces

•v=Vx^

•
×

×

Av

EUx

UB x^ ^range  (V)^
range  (U)^

range(EV) range(EU)

Figure 7.1:
Forward projection
of a vector. In
general range(Û)
and range(EU)
may overlap. After
the projection the
component lying
in range(EU)
prevent a backpro-
jection.

1This figure was inspired by a similar figure in [71].
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We can also take a sinogramu ∈ range(Û) and computeAHu, i.e. back-project
the sinogram into object space. However, after a projection, or back-projection,
the residuals add a component that does not lie in the range ofÛ (or V̂), so we
can not project again.

If the residual norms are negligible, we can also use the NPSVD to determine the
object that projects to a given sinogram, i.e. solve the linear system. Although the
NPSVD can be used for this purpose without decomposing it into singular triplets,
it is nevertheless a useful way to think about the NPSVD.

7.2 Diagonalizing the NPSVD

Eventually we want the coupling-matrix̂B to be diagonal. Fortunately,̂B is gen-
erally of small dimension (compared toA), and it is therefore possible to compute
the SVD ofB̂ = UBΣBVH

B. Inserting this into the NPSVD in eq. (7.3) gives:

A(V̂VB) = (ÛUB)ΣB + EUVB(7.4a)

AH(ÛUB) = (V̂VB)ΣH
B + EVUB(7.4b)

This is an NPSVD where the coupling-matrixΣB is diagonal by construction.
Note that‖ẼU‖ = ‖EU‖ and‖ẼV‖ = ‖EV‖ in any unitarily invariant norm.
As long as we can compute the SVD ofB̂, there is no need to worry whether it is
diagonal.

NPSVD Diagonalization
Let B̂ = UBΣBVH

B be an SVD ofB̂. The NPSVD can then be transformed
to one with a diagonal coupling-matrix using the following equations:

Ũ = ÛUB B̃ = ΣB Ṽ = V̂VB(7.5)

ẼU = EUVB ẼV = EVUB(7.6)

WhenB̂ is non-diagonal, the columns of̂U andV̂ does not approximate singular
vectors. Insteadrange(Û) andrange(V̂) approximate singular subspaces and the
singular values of̂B approximate singular values ofA.

One should be warned that even though the singular values ofB̂ are accurate
approximations to those ofA when the residual norms are small, the dimension
of the invariant subspace can only be assessed whenÛHÛ ≈ I andV̂HV̂ ≈ I.
Otherwise several singular values ofB̂ might refer to the same singular value of
A (see sec. C7 on p. 153).

7.3 Updating the NPSVD

We must devise methods for reducing the residual norms in the NPSVD. There
are two options at this point: either augment the singular matrices, to better ap-
proximate the residuals, or remove a part of the residuals. This is a rather crude
explanation, since the operations are connected.

The latter is known as restarting and is discussed in sec. 7.7, while this section
pursue the former strategy. Preliminary work showed that little is gained from
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augmentingrange(Û) andrange(V̂) separately, and we will only consider the
double-update:

Ũ =
[
Û, ŝu

]
Ṽ =

[
V̂, ŝv

]
(7.7)

The vectorŝsu andŝv represent directions that will become available for approx-
imating the subspaces. With a terminology partly borrowed from [32], we shall
refer to these vectors assearch vectors.

Updating the coupling matrix

We motivate the update by considering the case whereÛHÛ = I andV̂HV̂ = I.
In this case we may determine the matrixB̂ that minimizes the residual norms.
The least-squares approximation in theorem C8 states thatB̂ = Û+AV̂ mini-
mizes‖EU‖, while B̂H = V̂+AHÛ minimizes‖EV‖. However, in this particu-
lar case the pseudo-inverses are simply the adjoint matrices, and the two equations
for B̂ are really the same:

(7.8) B̂ = ÛHAV̂

The updated NPSVD should also satisfyB̃ = ŨHAṼ. Inserting eq. (7.7) leads
to:

(7.9) B̃ =
[
B̂ f̂v
f̂H
u β

]
wherêfH

u = ŝH
uAV̂, f̂v = ÛHAŝv, andβ = ŝH

uAŝv.

Even when the NPSVD is non-orthogonal, it remains helpful to keep the update
of B̂ in this form. Therefore we use eq. (7.9) as it stands, but revise the updates
of f̂u, f̂v, andβ in the general case.

Updating the residual matrices

The residual matrices can be evaluated directly from their definition in eq. (7.3):

ẼU = AṼ − ŨB̃

=
[
AV̂, Aŝv

]
−
[
Û, ŝv

]
B̃

=
[
(AV̂ − ÛB̂)− ŝuf̂

H
u , Aŝv − Ûf̂v − ŝuβ

]
= (Aŝv − Ûf̂v − ŝuβ)

[
0, · · · 0, 1

]
+
[
EU − ŝuf̂

H
u , 0

]
(7.10a)

Carrying out the same steps forẼV gives similarly:

ẼV = (AHŝu − V̂f̂u − ŝvβ∗)
[
0, · · · 0, 1

]
+
[
EV − ŝv f̂

H
v , 0

]
(7.10b)

Thus, if we interpret̂suf̂
H
u ≈ EU as a rank one approximation, then the updated

residual consists of the difference,EU − ŝuf̂
H
u , with an extra column appended.

We may write this as an update of the search-vectors, which we scale so the up-
dated search-vector is unit length.
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NPSVD Update
Given rank-one approximation of the residual matrices,EU ≈ ŝuf̂

H
u and

EV ≈ ŝv f̂
H
v , and a constant,β, the following is an updated NPSVD:

Ũ =
[
Û, ŝu

]
Ṽ =

[
V̂, ŝv

]
(7.11)

B̃ =
[
B f̂v
f̂H
u β

]
(7.12)

s̃u = (Aŝv − Ûf̂v − ŝuβ)/f̃u s̃v = (AHŝu − V̂f̂u − ŝvβ∗)/f̃v(7.13)

f̃u =
[
0
f̃u

]
f̃v =

[
0
f̃v

]
(7.14)

ẼU = s̃uf̃
H
u +

[
EU − ŝuf̂

H
u , 0

]
ẼV = s̃v f̃

H
v +

[
EV − ŝv f̂

H
v , 0

]
(7.15)

Choosing search-vectors

The update in eq. (7.15) implies that‖ẼU‖2F = ‖EU − ŝuf̂
H
u ‖2F + f̃2

u‖s̃u‖2F. The
goal is to minimize this quantity.

One way to proceed is the Jacobi-Davidson SVD [32]. This approach use a
search-vector that keeps the norm small using an iterative procedure based on
a preconditioner forA. However, it may not always be possible to find a suitable
preconditioner, which makes the scheme unsuitable for a canned routine.

A more pragmatic approach is to minimize the first term by settingŝu as the
first left singular vector ofEU (from the low-rank approximation in theorem C9).
Likewise,ŝv should be the first left singular vector ofEV. In practice the search-
vectors are generated iteratively.

Rounding errors

It is worthwhile to consider the effect of rounding errors in some detail. If the
computed matrix-vector product satisfies‖f(A, ŝv)−Aŝv‖2 ≤ c1‖A‖2 · ‖ŝv‖2
evaluating eq. (7.15) in floating-point leads to:

‖ẼU − s̃uf̃
H
u ‖F ≤ ‖EU − ŝuf̂

H
u ‖F + c1‖A‖2 + (c2‖Û‖2)‖f̂v‖2 + ε|β|

While c1 may differ between applications,c2 is usually near machine-epsilon.
Now consider runningk update steps after an initialization. The term‖Û‖2 can
be dropped since only the last element off̂v is non-zero. Noting that̂fv andβ are
embedded in the updated coupling matrix leads to:

‖ẼU − s̃uf̃
H
u ‖F ≤ kc1‖A‖2 + c2‖B̃‖F

In practical algorithms the singular values ofB̂ approximates those ofA, and we
may consider‖ẼU − s̃uf̃

H
u ‖F ≤ k(c1 + c2)‖A‖2 to be an upper bound. This im-

plies that the quality of estimated singular triplets is limited by the matrix-vector
product, not accumulation of rounding errors.

Algorithms
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To illustrate the development, several example implementations will be sprinkled
throughout this chapter. It must be emphasized that they are meant for demonstra-
tion only (see sec. 1.7 p. 6).

Algorithm 7.1 creates an NPSVD from two starting-vectors, and uses eq. (7.8) for
the coupling-matrix.

The update in alg. 7.3 is more complicated. Inspecting eq. (7.13) we see that only
the last component is non-zero. Since the majority of work in the update is matrix
multiplications withA, Û, andV̂ it is important to reduce this work. Therefore
the algorithm allowŝfu andf̂v to be scalars, and also returns scalar values.

7.4 Updates with reorthogonalization

Most software packages keep the columns of the singular matricesÛ and V̂
(nearly) orthogonal during the update. This material would be incomplete without

Algorithm 7.1: Initialize NPSVD
Create an NPSVD from two start-vectors.

H function [Ũ, Ṽ, B̃, s̃u, s̃v, f̃u, f̃v] = init(A, û, v̂)

Ũ = û/ ‖û‖2 ; Ṽ = v̂/ ‖v̂‖2 ; Normalize starting vectors

xu = A ∗ Ṽ; xv = AH ∗ Ũ; Form products

B̃ = Ũ
H ∗ xu; Coupling-matrix by eq. (7.8)

[̃su, f̃u] = unit(xu − Ũ ∗ B̃); Left residual by eq. (7.3a)

[̃sv, f̃v] = unit(xv − Ṽ ∗ B̃
H
); Right residual by eq. (7.3b)

J

Algorithm 7.2: Normalize a vector
Auxiliary routine that factorizes a vector, x = αy, where y has unit length. The
case x = 0 occurs surprisingly often in applications, even in floating-point arith-
metics.

H function [y, α] = unit(x)

α = ‖x‖2 ; Compute norm

H if α ≡ 0

y = randn(size(x)); y = y/ ‖y‖2 ; Create random unit vector

else
y = x/α; Normalize input vector

J J

Algorithm 7.3: Update NPSVD
Update a NPSVD as described on p. 84. If necessary, the search-vectors are
prepended with zeros to avoid excessive work.

H function [Ũ, Ṽ, B̃, s̃u, s̃v, f̃u, f̃v] = update(A, Û, V̂, B̂, ŝu, ŝv, f̂u, f̂v, β)

Ṽ = [V̂, ŝv]; Ũ = [Û, ŝu]; Update singular matrices by eq. (7.7)

lu = size(B̂, 1)− length(f̂u); zu = zeros(lu , 1); Form implicit zeros in fu

lv = size(B̂, 2)− length(f̂v); zv = zeros(lv , 1); And for fv

B̃ = [B̂, [zv ; f̂v] ; [zu ; f̂u]H, β]; Update coupling-matrix using eq. (7.12)

s̃u = A ∗ ŝv − Û(:, lv + 1 : end) ∗ f̂v − ŝu ∗ β; Unscaled search-vector from eq. (7.10a)

s̃v = AH ∗ ŝu − V̂(:, lu + 1 : end) ∗ f̂u − ŝv ∗ (β)∗ ; Unscaled search-vector from eq. (7.10b)

[̃su, f̃u] = unit (̃su); Normalize search-vector

[̃sv, f̃v] = unit (̃sv); Normalize search-vector
J
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discussing this, even if the mechanism in sec. 7.6 is employed.

Assume that̂UHÛ = I andV̂HV̂ = I. It was shown in sec. 7.3.1 the update
that minimizes any unitarily invariant norm of the residuals isf̂u = V̂HAHŝu,
f̂v = ÛHAŝv, andβ = ŝH

uAŝv. Inserting this into the formula for the updated
search-vector, eq. (7.13), gives:

s̃uf̃u = Aŝv − Ûf̂v − ŝuβ

= Aŝv − ÛÛHAŝv − ŝuŝ
H
uAŝv

= (I− ŨŨH)Aŝv(7.16a)

s̃vf̃v = (I− ṼṼH)AHŝu(7.16b)

If we assume that the search-vectors are orthogonal to the singular matrices,
ÛHŝu = V̂Hŝv = 0, then it follows that the updated search-vectors are orthogo-
nal to the updated singular matrices, i.e.ŨHs̃u = ṼHs̃v = 0. Unfortunately, this
holds only in exact arithmetic; a major cause of algorithmic inefficiency.

Instead an algorithm can enforce the property by orthogonalizing the updated
search-vectors against the singular matrices. Informally, orthogonalization re-
moves a component of the search-vector, sayŝu, in the range ofÛ which is a
result of rounding errors.

An algorithm that orthogonalizes the search-vectors every time they are updated
is said perform “full reorthogonalization”. This is sometimes used to approximate
the behavior of an algorithm that runs in exact arithmetic [15].

It becomes expensive to use full reorthogonalization if the iteration is allowed to
run for many steps. Instead it is possible to reorthogonalize either occasionally
with all vectors, or with some previous search-vectors at each step.

This strategy is known asselective reorthogonalization. Usually the vectors are
keptsemi-orthogonalso that|̂sH

u ûi| ≤
√

εM for i = 1, · · · , k [15].

7.5 Krylov algorithms

The Lanczos- and the Arnoldi-iterations are classical algorithms for large-scale
SVD- and eigenvalue-problems. Each algorithm result from a specific choice of
the search-vectorŝsu andŝv.

We will develop the algorithms by keeping the residual matrices,EU andEV,
at rank one during (almost) all steps. As discussed in sec. 7.3.4 an update (i.e.
alg. 7.3) returns a useful approximations of the residual matrices, even in the
presence of rounding errors. For completeness we mention that there exist block-
algorithms using residuals with higher ranks [26].

Usually the classical algorithms are developed in terms of Krylov subspaces, e.g.
[27, 73]. In this case the Krylov subspacerange(Kn), where theKrylov matrix
is given byKn =

[
x, Ax, A2x, · · · , An−1x

]
, is taken as an “obvious

place” to search.

The idea of minimizing the residual norms is rarely made explicit, although some
derivations resembles those in the previous sections superficially, e.g. [67, p.8].
Instead the algorithms are derived by reducing the Krylov-matrix to a prescribed
form of the coupling-matrix̂B, as shown in fig. 7.2.
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
• •
• • •
• • ...... ... ...... • •

• • •
• •


(a) Tridiagonal
(Lanczos tridiag).


•
• •
• •... ...... •

• •
• •


(b) Lower bidiagonal
(Lanczos bidiag).


• •
• •
• ...... ...

• •
• •
•


(c) Upper bidiagonal
(Lanczos bidiag).


• • • ... • • •
• • • ... • • •
• • ... • • •... ... ... ... ...... • • •

• • •
• •


(d) Upper Hessenberg
(Arnoldi)

Figure 7.2:
Structure of B̂
generated by the
Krylov-algorithms.
Only “•”-elements
can be nonzero.

Lanczos tridiagonalization

The Lanczos iteration attempts to find a partial SVD. It starts with two vectors and
attempts to reduce the residual norms by repeatedly updating the NPSVD with the
updated search-vectors.

In principleβ can be chosen freely, and the first idea is probably to setβ = 0.
However, since the goal is to minimize the residual norms it is better to follow
sec. 7.3.1 and useβ = ŝH

uAŝv. This leads directly to algorithm 7.4.

Note that̂fu andf̂v only contains a single non-zero entry each, soB̂ is tridiagonal.
However, rather than being the starting-point, this structure of the coupling-matrix
is a byproduct of the desire to compute singular subspaces.

Lanczos bidiagonalization

One can do better than keeping both errors at rank one. If we are givenÛ then we
can choosêV such thatrange(V̂) = range(AHÛ), e.g. using a QR-factorization.
This allows us to setEV ≈ 0.

If EV ≈ ŝv f̂
H
v = 0, then we may choosêsv freely. Since we want a recur-

rence wherẽEV ≈ 0, it follows from eq. (7.13) that we should chooseŝvβ∗ =
AHŝu − V̂f̂u. This immediately leads to algorithm 7.5.

The bidiagonal structure of the coupling-matrix follows from the fact thatf̂v = 0
and f̂u contains a single non-zero element. KeepingEU ≈ ŝuf̂

H
u = 0 instead

would similarly lead to an upper bidiagonal coupling-matrix.

Algorithm 7.4: Lanczos tridiagonalization
The Lanczos tridiagonalization algorithm in terms of NPSVD updates.

H function [Û, V̂, B̂, ŝu, ŝv, f̂u, f̂v] = tridiag(A, û, v̂, N )

[Û, V̂, B̂, ŝu, ŝv, f̂u, f̂v] = init(A, û, v̂);

H for n = 1 : N − 1 Expand to N columns

β = ŝu
H ∗A ∗ ŝv; Good choice, but could be anything

[Û, V̂, B̂, ŝu, ŝv, f̂u, f̂v] = update(A, Û, V̂, B̂, ŝu, ŝv, f̂u, f̂v, β);
J J

Algorithm 7.5: Lanczos bidiagonalization
The Lanczos lower bidiagonalization algorithm in terms of NPSVD updates.

H function [Û, V̂, B̂, ŝu, ŝv, f̂u, f̂v] = bidiag(A, û, N )

[Û, V̂, B̂, ŝu, ŝv, f̂u, f̂v] = init(A, û, AH ∗ û);

H for n = 1 : N − 1 Expand to N columns

ŝv = AH ∗ ŝu − V̂(:, n) ∗ f̂u; Search-vector that keep ẼV = 0

[̂sv, α] = unit (̂sv); β = (α)∗ ; Scale

[Û, V̂, B̂, ŝu, ŝv, f̂u, f̂v] = update(A, Û, V̂, B̂, ŝu, ŝv, f̂u, 0, β);
J J
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The Arnoldi iteration

The Arnoldi iteration is used in eigenvalue-problems, which is a digression from
the topic of this chapter. We include it for completeness and because it is impor-
tant in practice.

The goal is to find a unitary matrix,̂Q, that (nearly) spans an invariant subspace,
i.e. AQ̂ = Q̂B̂ + E, E ≈ 0. Inserting a Schur-decomposition ofB̂ leads to an
approximate Schur-decomposition ofA. The hope is to find an acceptable ap-
proximation while the dimension of̂B is small enough to allow this computation.

Comparing with the NPSVD in eq. (7.3) we see that the desired relation is ob-
tained forQ̂ = Û = V̂ andEU = E. To keepŨ = Ṽ it is necessary to
setŝv = ŝu. We obtain a recurrence that produces orthogonal search-vectors by
settinĝfv andβ so s̃uf̃u = Aŝv − Ûf̂v − ŝuβ is orthogonal tõU.

Algorithm 7.6 implements the idea using Gram-Schmidt orthogonalization. Since
f̂u only contains a single non-zero entry, it follows thatB̂ is upper Hessenberg.

This formulation reveals that‖EV‖ is uncontrolled. Since‖EV − ŝv f̂
H
v ‖ can be

arbitrarily large, so can‖ẼV‖. As the precision of the eigenvalue problem de-
pends on both left and right eigenvectors [27], this might be a problem. Since the
Arnoldi iteration is of no use in SVD computations, this issue will not be pursued
further.

Algorithms
001010
100001
111100

The implementations in alg. 7.4–7.6 are unusual, and at first sight alg. 7.5 and its
traditional counterpart, e.g. bidiag 1 in [55], might appear to be different. It is
nevertheless trivial to optimize the NPSVD-based algorithms to their traditional
version.

Lanczos tridiagonalization, as given by alg. 7.4, is very general. Normally it is
applied to Hermitian matrices with a single starting-vector used twice. In this case
alg. 7.4 can be considered as a special variant of the Arnoldi iteration.

One should not mistake alg. 7.4 with “unsymmetric Lanczos tridiagonalization”
[26]. Although the coupling matrix is updated in a similar way, the search-vectors

Algorithm 7.6: Arnoldi reduction to upper Hessenberg form.
The Arnoldi iteration written in terms of a NPSVD.

H function [Q̂, B̂, ŝu, f̂u] = arnoldi(A, x, N )

[Q̂, V̂, B̂, ŝu, ŝv, f̂u, f̂v] = init(A, x, x);

H for n = 1 : N − 1 Iterate

ŝv = ŝu; s̃u = A ∗ ŝv; Ensure su = sv and form the product

H for j = 1 : n Make s̃u orthogonal to Û

f̂v(j , 1) = Q̂(:, j )H ∗ s̃u;

s̃u = s̃u − Q̂(:, j ) ∗ f̂v(j , 1);
J

β = ŝu
H ∗ s̃u; Make s̃u orthogonal to Ũ

s̃u = s̃u − ŝu ∗ β; Needlessly recomputed in update

[Q̂, V̂, B̂, ŝu, ŝv, f̂u, f̂v] = update(A, Q̂, Q̂, B̂, ŝu, ŝu, f̂u, f̂v, β);
J J
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are quite different. While unsymmetric Lanczos is an unstable method for eigen-
value problems, alg. 7.4 is perfectly stable for SVD-problems.

Starting from MATLAB
 6.0, the functioneigs is based on the Arnoldi iteration

implemented in ARPACK [50]. In turn,svds for computing a PSVD, is based
oneigs . However, the matrix involved is Hermitian and ARPACK uses Lanczos
tridiagonalization, not Arnoldi.

7.6 Reorthogonalization

Just as we could restructurêB by diagonalizing it, it is also possible to reorthogo-
nalize an NPSVD. Instead of keeping the columns ofÛ andV̂ nearly orthogonal,
it will suffice to keep them well-conditioned.

Let Û = ŨRU andV̂ = ṼRV be QR-decompositions. The coupling-matrix
that minimizes the residual norms is given in sec. 7.3.1 on p. 83:

B̃ = ŨHAṼ

=
(
ÛR−1

U

)H
AV̂R−1

V

= R−H
U

(
ÛHAV̂

)
R−1

V

InsertingAV̂ = ÛB̂ + EU from eq. (7.3a) yields

B̃ = R−H
U

(
ÛH(ÛB̂ + EU)

)
R−1

V

= R−H
U

(
RH

URUB̂ + ÛHEU)
)
R−1

V

= RUB̂R−1
V + ŨHEUR−1

V(7.17a)

or, if we insertÛHA = B̂V̂H + EH
V from eq. (7.3b) instead,

B̃ = R−H
U B̂RH

V + R−H
U EH

VṼ(7.17b)

The new residuals follows from their definition in eq. (7.3) by inserting eq. (7.17b)
in eq. (7.17a) and eq. (7.18b):

ẼU = AṼ − ŨB̃ =
(
I− ŨŨH

)
EUR−1

V(7.18a)

ẼV = AHŨ− ṼB̃H =
(
I− ṼṼH

)
EVR−1

U(7.18b)

Assume we have residual approximationsEU ≈ ŝuf̂
H
u andEV ≈ ŝv f̂

H
v . Adding

and subtracting this to the residuals gives:

ẼU =
(
I− ŨŨH

)
(EU − ŝuf̂

H
u )R−1

V +
(
I− ŨŨH

)
ŝu
(
f̂H
u R−1

V

)
ẼV =

(
I− ṼṼH

)
(EV − ŝv f̂

H
v )R−1

U +
(
I− ṼṼH

)
ŝv
(
f̂H
v R−1

U

)
The last term is the transform equations for the search-vectors:

s̃u =
(
I− ŨŨH

)
ŝu f̃H

u = f̂H
u R−1

V

s̃v =
(
I− ṼṼH

)
ŝv f̃H

v = f̂H
v R−1

U

SinceŨ andṼ have orthonormal columns, we have the satisfying result that the
updated search-vectors are orthogonal to the updated singular matrices.
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NPSVD Reorthogonalization
Given rank-1 approximations,EU ≈ ŝuf̂

H
u andEV ≈ ŝv f̂

H
v , the following

returns an orthogonalized NPSVD.
Let Û = ŨRU andV̂ = ṼRV be QR-decompositions:

s̃u = (I− ŨŨH)̂su s̃v = (I− ṼṼH)̂sv(7.19)

f̃u = R−H
V f̂u f̃v = R−H

U f̂v(7.20)

(7.21) B̃ =

{
RUB̂R−1

V + (ŨHŝu)f̃H
u or

R−H
U B̂RH

V + f̃v(ṼHŝv)H

ẼU = s̃uf̃
H
u +

(
I− ŨŨH

)(
EU − ŝuf̂

H
u

)
R−1

V(7.22a)

ẼV = s̃uf̃
H
u +

(
I− ṼṼH

)(
EV − ŝv f̂

H
v

)
R−1

U(7.22b)

(7.22c)

Rounding errors

To analyze the growth of the residual norm, we first note that‖
(
I− ŨŨH

)
X‖ ≤

‖X‖ in any unitarily invariant norm (see theorem C7 on p. 148). It follows from
eq. (7.18) that the residual norms can grow by at most a factor of‖R−1

U ‖ and
‖R−1

V ‖.

More specifically, consider the residual due to previous rounding errors:

‖ẼU − s̃uf̃
H
u ‖ ≤ ‖EU − ŝuf̂

H
u ‖ · ‖R−1

V ‖(7.23a)

‖ẼV − s̃v f̃
H
v ‖ ≤ ‖EV − ŝv f̂

H
v ‖ · ‖R−1

U ‖(7.23b)

Therefore the NPSVD remains accurate after the transformation, as long asÛ
andV̂ are well-conditioned. This is not nearly as strict as the semi-orthogonality
condition described in sec. 7.4.

Algorithm
001010
100001
111100

A straightforward implementation is given in alg. 7.7. As the update described
in sec. 7.3, it also simplifies in the case wheref̂u and f̂v have a single non-zero
entry. SinceR−H

U is lower triangular it follows thatR−H
U f̂u also consists a single

non-zero entry. In fact we havẽfu = f̂u/(RU)∗(k,k).

7.7 Restarting Lanczos

When dealing with large-scale problems the strategies developed so far are insuf-
ficient. The main problem is that there is no way to know in advance how many
steps are required before the residual norms are sufficiently small.

In fact we are supposed to deal with problems so large that not even the requested
singular triplets can be held in memory at a single time. We also want to avoid
disk storage, if at all possible.

The solution is to restart the procedure. When we have exhausted the memory it
is time to clean up and remove triplets that are of no interest. Conceptually we
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form linear combinations of the vectors,ũ = Ûku andṽ = V̂kv and then start
from scratch with these vectors as starting-vectors.

In principle it should be most flexible to allowku andkv to be different. However,
in bidiagonalization only one vector is used, and the theory is almost invariably
developed by rewriting eq. (7.3) in the following form:

CQ =
[

A
AH

] [
Û
V̂

]
=
[
Û
V̂

]
B̂ +

[
EU

EV

]

In exact arithmeticrange(Q) would form a Krylov-subspace ofC with q =
[ û
v̂
]

as starting-vector. We could therefore write the new starting-vector asq̃ = coq +
c1Cq+ · · ·+ckCkq. In other words, the restarting vector is found by multiplying
a polynomial inC with the original starting-vector. By factoring this polynomial
we may therefore write:

q̃ =
(∏

i

(
C− µiI

))
q

In 1994Åke Björck, Eric Grimme and Pail Van Dooren published a method for
restarting the Lanczos bidiagonalization algorithm implicitly [9]. Their method
was an adaption of a scheme by Danny C. Sorensen for restarting the Arnoldi
method.

The general idea in implicit restarting is that all matrices are transformed to the
state they would have had if the new starting vector had been used, but without
going through all the steps again. The zeros of the polynomial are used, not the
coefficients, in a series of shifted QR-decomposition. We refer to [50] for details.

The exact shift strategy

A good introduction to different restarting strategies found in real software is [49].
Here we merely recognize that the most successful restarting strategy is the exact

Algorithm 7.7: Reorthogonalization
Given an NPSVD with well-conditioned singular matrices, this function restore
column-orthogonality to full machine precision. The resulting coupling-matrix is
full in general.

H function [Ũ, Ṽ, B̃, s̃u, s̃v, f̃u, f̃v] = orthogonalize(Û, V̂, B̂, su, sv, fu, fv)

[Ũ, RU] = qr(Û, 0); [Ṽ, RV] = qr(V̂, 0); Determine QR-factorizations

xu = Ũ
H ∗ su; s̃u = su − Ũ ∗ xu; Update su by eq. (7.19)

xv = Ṽ
H ∗ sv; s̃v = sv − Ṽ ∗ xv; Update sv

lu = size(B̂, 1)− length(fu); zu = zeros(lu , 1); Form implicit zeros in fu

lv = size(B̂, 2)− length(fv); zv = zeros(lv , 1);

f̃u = ((RV)−1)H ∗ [zu ; fu]; Update fu, eq. (7.20)

f̃v = ((RU)−1)H ∗ [zv ; fv]; Update fv

H if 1, B̃ = RU ∗ B̂ ∗ (RV)−1 + xu ∗ f̃u
H
; Update B̂ using eq. (7.17a)

else, B̃ = ((RU)−1)H ∗ B̂ ∗RV
H + f̃v ∗ xv

H; Or use (7.17b)
J

[̃su, α] = unit (̃su); f̃u = f̃u ∗ α; Normalize

[̃sv, α] = unit (̃sv); f̃v = f̃v ∗ α; Normalize
J
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shift strategy used in ARPACK. Other strategies, such as shifting at Leja-points
or roots of a Chebyshev polynomial, may also be useful [13].

The exact shift strategy has the following appealing interpretation when run in
exact arithmetic [50, p. 61–62]:

1. Diagonalize the coupling-matrix,̂B, as described in sec. 7.2.

2. Sort the diagonal into disjoint sets of “wanted” and “unwanted” values.

3. Form a linear combination,̃q = Q̃k, of the columns in the wanted set.

4. Begin all over withq̃ as the starting-vector, and update once for each entry
in the wanted set.

The spectrum of the restarted coupling-matrix now consists of the wanted set.

7.8 Restarting the NPSVD

If B̂ is diagonal, then deleting a column from̂U, V̂, EU, EV, and both col-
umn and row fromB̂ is still a valid NPSVD. Comparing with the description in
the previous section, we see that deleting from a diagonal NPSVD is essentially
equivalent to implicit restarting with the exact shift strategy.

The diagonalization itself was derived in sec. 7.2. As in the previous sections we
extend this to the case where we are given residual approximationsEU ≈ ŝuf̂

H
u

andEV ≈ ŝv f̂
H
v . Adding and subtracting these approximations in eq. (7.6) leads

to:

ẼU = ŝuf̂
H
u VB +

(
EU − ŝuf̂

H
u

)
VB

ẼV = ŝv f̂
H
v UB +

(
EV − ŝv f̂

H
v

)
UB

Apart from giving equations for the transformed search-vectors we also see that
no amplification of previous rounding errors occurs (measured in any unitarily
invariant norm).

Algorithm
001010
100001
111100

Instead of deleting columns of̃U we may delete columns ofUB before applying
the product, as shown in algorithm 7.8. This is a significantly improvement in
large-scale applications.

One significant attribute is that the majority of work is expressed in the form of
matrix-multiplications, which is available at peak-performance on modern com-
puters. In fact, orthogonalization, alg. 7.7, and restart can be fused into a single
efficient operation. This will be pursued in the applications in the comming chap-
ters.

7.9 References

Krylov methods are very general, and the subject is treated in numerous places.
Two excellent examples are books written by Trefethen and Bau [73] and Demmel
[15].
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NPSVD Restart
Let EU ≈ ŝuf̂

H
u and EV ≈ ŝv f̂

H
v be rank-1 approximations, and̂B =

UBΣBVH
B an SVD. Then the restarted NPSVD is given by:

Ũ = ÛUB B̃ = ΣB Ṽ = V̂VB(7.24)

s̃u = ŝu s̃v = ŝv(7.25)

f̃u = VH
Bf̂u f̃v = UH

Bf̂v(7.26)

ẼU = s̃uf̃
H
u +

(
EU − ŝuf̂

H
u

)
VB(7.27)

ẼV = s̃v f̃
H
v +

(
EV − ŝv f̂

H
v

)
UB(7.28)

Now split the singular values of̂B into a “wanted” and “unwanted” set, and
delete the following entries that corresponds to the unwanted set:

• Entries iñsu ands̃v,

• Columns inŨ andṼ,

• Columns and rows iñB,

Note that the columns iñEU andẼV are deleted implicitly.

For the bidiagonalization, one of the most complete references is the paper where
Paige and Saunders develops the iterative solver known as LSQR [55]. A thorough
analysis of the effect of rounding errors in the case of partial reorthogonalization
can be found in the PhD thesis by Rasmus Munk Larsen [46].

Implicit restarting was originally developed for the Arnoldi-iteration by Danny C.
Sorensen [66]. The paper was expanded into a more explanatory technical report
[67].

The restarting scheme is implemented in the highly successful software-package
ARPACK written by Richard Bruno Lehoucq et. al. [50]. Those who are in-
terested in restarting strategies in real software should also consult his survey in
[49].

Exact restarting is the most successful strategy used in current software. However,

Algorithm 7.8: Restart NPSVD
Example of a simple NPSVD restart, assuming the singular matrices have or-
thonormal columns (e.g. returned by alg. 7.7). The N approximate triplets with
singular vectors nearest α is chosen for the restart.

H function [Ũ, Ṽ, B̃, s̃u, s̃v, f̃u, f̃v] = restart(Û, V̂, B̂, su, sv, fu, fv, α, N )

fu = [zeros(size(B̂, 1)− length(fu), 1) ; fu]; Prepend implicit zeros in fu

fv = [zeros(size(B̂, 2)− length(fv), 1) ; fv]; And for fv

[UB, ΣB, VB] = svd(B̂, 0); σ = diag(ΣB); Compute the SVD of B̂

[∅, inx ] = sort(|σ − α|); inx = inx (1 : N ); Find wanted set as entries closest to α

f̃u = VB
H ∗ fu; f̃u = f̃u(inx ); s̃u = su; Update ẼU, search-vector is unmodified

f̃v = UB
H ∗ fv; f̃v = f̃v(inx ); s̃v = sv; Same for ẼV

B̃ = ΣB(inx , inx ); The coupling-matrix was given by the SVD

Ũ = Û ∗UB(:, inx ); Ṽ = V̂ ∗VB(:, inx ); Update remaining matrices
J
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other schemes are possible, with Leja points being one of the most interesting
[13].

Those who want to use Krylov methods without too much thinking should be
warned that it is neccessary to pay extreme attention to details in floating point
arithmetics. Therefore, it is best to use canned routines written by experts. Many
excellent routines are available, e.g. in MATLAB

 or ARPACK.

Those who wants to implement Krylov algorithms anyway may start with the ex-
cellent book by Claerbout [14], and the book of template algorithms by Barett
et. al. [4].
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8 Computing the SVD
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This chapter applies the framework laid out in chapter 7 to compute large-scale
SVD problems. A practical implementation faces a number of issues that must be
dealt with.

First, we give a general description of high-performance implementations and
strategies. This is followed by the basic iteration that forms the core of the SVD
computations. After dealing with several practical problems, such as triplet alias-
ing, we give several deflation strategies.

Finally, these results are combined into the sliding window strategy.

8.1 On the meaning of “large-scale”

The term “large-scale” is a somewhat fluid concept and often depends on context.
Sometimes the term is used for any problem whose dimensions are so large that
direct methods are unpractical.

We will use the term for systems that are so large that only a fraction of the sin-
gular triplets will fit in main memory of the computer. If this “fraction” is small
enough, the computational cost of several of the modules in the previous chapter
are severely affected.

Consider a problem represented by a matrixA ∈ Rm×n, m ≥ n, where onlyK
triplets can be held in memory. Assume the SVD of thek × k coupling-matrix,
B̂, is needed at some point.

A general SVD algorithm runs inO(k3) time while the matrix-matrix multipli-
cationÛQ, Q ∈ Rk×k runs inO(mk2) time. Although the order-factors for the
two problems are very different, the multiplication still dominates the time spent
if k/m ≤ K/m is small enough.

If the problem is very large, the work spent by anyO(k3) algorithm is negligible
compared to operations performed on the singular matrices. Two direct conse-
quences of this should be kept in mind:

1. it is essential to optimize the work performed on the singular matrices,

2. the computational cost is not dominated by work onk × k matrices.

Generally, it is sound advice to exploit the structure of a matrix. In contrast, the
reorthogonalization discussed in sec. 7.6, and implemented in alg. 7.7 p. 91, de-
stroys the structure of̂B. However, the extra cost of working on̂B is insignificant
compared to the advantage gained by collecting the work on the singular matrices.
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8.2 The memory hierarchy

The memory system of a modern computed is implemented in a number of layers
as shown in fig. 8.1. In order to perform a computation rapidly, it is important to
utilize the small amount of fast memory available.

Typical cache−hierarchy

Registers −128b 1Kb 1c

L1−cache −8Kb 128Kb −2c 8c

L2−cache −128Kb 1Mb −5c 15c

L3−cache −1Mb 4Mb −10c 50c

Main memory −512Mb 4Gb −90c ∞
Disk ∞ ∞

Location Size Latency

On chip

Off chip

Avoid if possible!

Figure 8.1:
Memory hierar-
chy of a typical
modern computer.
The small amount
of fast memory
must be utilized
to achieve high
performance.

From a practical point of view, this is achieved byblocking the operations. In
practice, this means we should perform as much work as possible in highly op-
timized kernels. In the current context, these kernels come from two sources.

• BLAS (Basic Linear Algebra Subprograms). This is a standardized inter-
face to basic operations. To achieve high performance, the library must be
tuned to the computer architecture. A high-quality implementation depends
on intricate details of the cache-implementations. An apparently simply
routine, such as matrix-matrix multiplication, may use different methods
depending on whether a matrix has a prime number of rows or is a power
of two.

• LAPACK (Linear Algebra Package). The de-facto software package for
small dense problem in linear algebra. It includes routines for a number of
factorizations and solving basic problems. The package is built on BLAS,
and is optimized for computers with deep cache hierarchies.

The BLAS-library is divided into level 1–3, which can roughly be characterized
in the following way [15].

• Level 1 PerformsO(k) operations. Examples are inner products, vector-
scaling, and vector-norms.

• Level 2 PerformsO(k2) operations. Examples are matrix-vector products,
solving a triangular system, and adding a rank-one update to a matrix.

• Level 3PerformsO(k3) operations. Generally, these operations are various
incarnations of matrix-matrix products.

The level-3 BLAS is important because the amount of computation is large com-
pared to the data that must accessed trhough memory. This makes it possible
to exploit the speed of current computers, which is impossible with level-1 and
level-2 operations.

Generally, it is wise to use level-3 operations if possible. CPU vendors, such as
Intel and IBM, provide highly tuned libraries and using them can easily increase
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the speed of an algorithm by a factor of 5–10, depending on the age of the com-
puter. More importantly, this figure is expected to increase at an exponential rate
at least until 2016 [63].

Finally, a procedure based on level-3 operations has the ability to scale to several
processors for very large problems. Again this is only advantageous if the amount
of processing is large compared to the data. This makes it reasonable to transmit
the data over a slow link, such as a network, an internal cross-bar switch, or a
cache residing on a different CPU.

8.3 Left residual factorization

From now on we restrict our attention to algorithms that would keep the right
residualEV matrix at zero in absence of rounding errors. In other words we set
EV ≈ 0 and seek to minimizeEU ≈ ŝuf̂

H
u , hence the name.

It is convenient to write the residuals in the formEU = ŝuf̂
H
u + GU andEV =

GV. We can then rewrite the NPSVD in the following form:

AV̂ = ÛB̂ + ŝuf̂
H
u + GU(8.1a)

AHÛ = V̂B̂H + GV(8.1b)

All rounding errors are represented inGU andGV. We shall refer to these ma-
trices asrounding residual matrices, or just rounding residuals.

Lanczos and residual factorization

By our definition Lanczos bidiagonalization, described in sec. 7.5.2 p. 87, is a left
residual factorization. The new term is introduced because the coupling matrixB̂
will not generally be on bidiagonal form.

Ronald B. Morgan gave an elegant proof in [53] that an orthogonalized NPSVD
whereEU is rank one,EV is zero, and the singular values ofB̂ are distinct cor-
responds to a bidiagonalization with a certain starting vector. Thus, it does not
matter what form the coupling matrix has.

Since the algorithms to be presented in this chapter are similar to the Lanczos
algorithms, it might be appropriate to highlight some differences between the
framework from the previous chapter and the Lanczos theory as it is developed
traditionally.

Lanczos algorithms have a striking ability to determine singular values accurately,Accuracy

in spite of rounding errors. This is quite surprising, since the inner loop is a recur-
rence using only the previous vector. The result is nevertheless fully established in
sec. 7.3, whereall rounding errors are taken into account. To the best knowledge
of the author, this has not been done previously.

In more practical terms, the systematic modularization of the routines is goodModularization

engineering practice. It allows the same code to be used in several different appli-
cations, and makes it easier to construct reliable software. Since all the modules
were shown to be stable, it is straightforward to combine them into more complex
algorithms and prove stability.
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Computational efficiency is perhaps best illustrated by delayed orthogonalization.Efficiency

The bulk of work in this module is naturally formulated as matrix-matrix multipli-
cations, which are level-3 operations. However, this advantage can only be gained
by abandoning the requirement that the coupling-matrix remains bidiagonal.

Furthermore, the implicit restarting scheme has some advantages not found inGeneral restart

previous methods. Apart from the fact that the work is mainly performed as level-
3 operations, it also has the advantage that computing a converged triplet and
removing it is done in the same operation. This fact will be exploited extensively
in the algorithms discussed in this chapter.

Alternatives

We reiterate that the advantages only applies to large-scale problems as described
in sec. 8.1. While some optimization could possibly make the algorithms compet-
itive for “medium-scale” problems (in terms of computation time), they are not
suitable for small-scale problems such as unstructured dense systems.

When this project was initiated, there was no codes available that combined im-
plicit restarting and partial reorthogonalization. In the meantime, Rasmus Munk
Larsen released a Fortran package [47] which extends the MATLAB

-code from
his PhD [46] with this ability.

It is possible that this approach can be used as an alternative to the full reorthogo-
nalization described in chapter 7. For now, the numerical behavior of the approach
has not yet been fully analyzed.

Finally, it is possible that an algorithm based on partial reorthogonalization with-
out restart will suffice for a particular problem. However, although implicitly
restarted methods may be slower in a particular case, their ability to scale may
justify their use.

8.4 Accuracy of matrix-vector product

The algorithms are based on functions for computing the matrix-vector products
Av andAHu, whereu andv are unit vectors. The numerical properties of the al-
gorithms are affected by the accuracy of these functions, and we need to quantify
this.

We will assume there is a constant,τ , so the functions satisfiesfA(v) = Av +
rA(v) andfH

A (u) = AHu + rH
A(u) where‖rA(v)‖2 ≤ τ and‖rH

A(u)‖2 ≤ τ .

This model is well suited for applications where the rounding errors generated by
the functions are insensitive to the input. It implies that the rounding errors are
consider to be of the same order irrespective of the norm of the output.

In many casesτ = cεM‖A‖2, wherec is a modest factor. If it is impossible to
analyze the accuracy of the routines, settingc to be a comfortably large constant
may be the only practical way to proceed.

Sparse matrices

For concreteness, we consider the case whereA is sparse, and the matrix-vector
product is computed by inner products. It follows from sec. 1.8 that we can set
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τ = νl‖(|A|)‖2, wherel is the maximum number of nonzero elements in any row
or column ofA.

Since the 2-norm is not absolute, we can not simply use‖A‖2 in this equa-
tion. Instead we may estimate the norm separately, or we can use the bound
‖(|A|)‖2 ≤

√
‖A‖1‖A‖∞ [27]. However, such a bound is usually pessimistic

since the rounding errors tends to be normally distributed and reaching the bound
becomes extremely improbable.

Asymmetric accuracy

It is possible that one computational routine is more accurate than the adjoint. For
instance, consider a sparse matrix with only a few non-zero elements in each row,
but some relatively dense columns. We saw in sec. 1.8 that in this case the product
Av will usually be computed more accurately thanAHu.

Another example introducing asymmetry by structure is preconditioning. A pre-
conditioner is often a diagonal matrix which can be applied to high relative ac-
curacy. It has the effect of scaling elements to roughly the same order, and all
else being equal, this commonly leads to smaller rounding errors. However, the
routine implementing the adjoint operator applies the preconditioner at the end of
the computation, which does not improve the accuracy.

Asymmetry also arises for algorithmic reasons. Consider a pair of algorithms
that accesses a sparse matrix with non-zero elements stored in column-order. The
productAHu can be computed element by element in a tight inner loop. A com-
puter with extended-precision registers can often compute each component very
accurately. In contrast, the productAu is computed by accumulating a vector in
memory, and does not benefit much from extended precision.

Direct measurement

A different approach is to measureτ based on the functions themselves. If the
routines are available in different precisions, it may be possible to estimateτ by
comparing the different variants.

In practice, it is more useful to estimateτ from a single set of algorithms. This
is also useful for checking that the functionsfA andfH

A actually implements the
adjoint of each other.

Given that the accuracy of the matrix-vector products may be asymmetric, and
often have a component whose size depends on the norm of the output, it is by no
means a trivial task to estimateτ reliably. We shall not give a full analysis here,
but mention that the routinebbtauest in BBTools works well in many cases.

8.5 Basic iteration

The modules derived chapter 7 are given in a general form. This chapter concerns
how these modules may be pieced together in the case of left residual factoriza-
tion.

The basic iteration, or base-iteration, is essentially started as alg. 7.5 p. 87. This
algorithm lacks a stopping criterion; the details are worked out in appendix B and
a simplified implementation is given in alg. B1 p. 146.
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When the iteration completes, we may orthogonalize and restart (alg. 7.8 and 7.7).
Although the routines are limited to an exact restarting strategy, it is still necessary
to choose the “wanted” and “unwanted” sets described in sec. 7.7. This will be
addressed in the following sections.

The restarted, i.e. reduced, NPSVD is then expanded again via the base-iteration,
until the desired singular triplets have been extracted. However, when we get to
reorthogonalize, only the updated part of the singular matrices needs to be re-
orthogonalized.

To implement this, it is convenient to include reorthogonalization in the base
iteration. The QR-decompositions in alg. 7.7 can be computed efficiently by
computingRU andRV as the Cholesky-factorizationsRH

URU = ÛHÛ and
RH

VRV = V̂HV̂. The singular matrices may then be updated by post-multiplying
by R−1

U andR−1
V .

This is not generally a stable approach, but is a viable option in this case where the
condition numbers ofRU andRV are kept under strict control. Apart from being
a fast way to compute the QR-factorization, it also means that we can updateB̂
beforeÛ andV̂.

However, when we knoŵB we may diagonalize it and updatêU andV̂ as a single
matrix-matrix multiplication. Combining the basic updates, reorthogonalization,
and diagonalization into the base-iteration reduces the work on the singular ma-
trices to the following operations:

• UpdateÛ andV̂ from, say,k0 to k columns (alg. B1).

• Compute columns1 k0 + 1 to k of the matriceŝUHÛ andV̂HV̂.

• Fuse reorthogonalization and diagonalization to update ofÛ andV̂ with a
single matrix-matrix multiplication for each.

As discussed in sec. 8.1, the bulk of work in large-scale problems is performed in
work involving the large matrices. In this case these are the singular matrices,Û
andV̂, and the operatorA.

The fused procedure above updates the singular matrices mainly with level-3 op-
erations. The expansion itself requires two matrix-vector products, withA and
AH, to add a column to each singular matrix. It is difficult to imagine this can be
improved much further.

For details about the fused implementation we refer to [34], which also includes
benchmarks of the process.

8.6 Accuracy and aliasing

When the base-iteration completes, we have an NPSVD on the form given by
eq. (8.1) where the coupling matrix is diagonal,B̂ = diag(σ̂), and the singular
matrices have columns that are numerically orthonormal.

The rounding residual matrices,GU andGV, are unknown, but their norms are
on the order ofτ . They may generally ignored in the restarting strategy; their role
served in the analysis of the base iteration.

1This also gives the columns, sinceXHX is Hermitian.
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Once we have the ortho-diagonal NPSVD, we also have estimates of the singular
triplets ofA. Ignoring the residual matrices, the quality of the triplets are deter-
mined bŷsu. Specifically, corollary C18 p. 155 states thatA has a singular value,
σ, in the range|σ̂|i − |̂su|i ≤ σ ≤ |σ̂|i + |̂su|i.

Thus, if triplet i satisfies the|̂su|i ≤ τ , then it has converged to the accuracy
provided by the matrix-vector product routines. After convergence, a triplet may
be removed to make space for new iterates.

Triplet aliasing

The fallacy of this is that there are many other triplets that may contain useful
information, and it would be wasteful at best to throw these away. An in depth
discussion of this point is given in sec. C7 on p. 153, and the result is that we
should also include all triplets that mayalias triplets in the wanted set.

In short, an aliasing triplet is a triplet that may be rich in components correspond-
ing to triplets already chosen for the restart. If we do not include these triplets for
the restart, the convergence may be slow because the algorithm is required to “re-
discover” these directions. Even worse, we may throw away a triplet with a large
components corresponding to a singular value that is smaller than those found
already. This is not acceptable, and leads to algorithms that may not converge at
all.

Fortunately, it is not hard to determine which triplets that may alias those in the
wanted set. All we need is a bound on the singular values corresponding to each
triplet. This is supplied by theorem C17 and implemented in alg. 8.1.

Combating rounding errors

Rounding errors are the bane of efficiency for iterative algorithms. While detailed
analysis is necessary to get numerical algorithms stable, an element of art remains
as defined by Donald E. Knuth [56]:

Science is what we understand well enough to explain to a computer.
Art is everything else we do.

After a restart, the norm ofEU may be very small. This is particularly true if
the restart discards some triplets with large errors. The result is that the norm of
EU ≈ ŝuf̂u may be reduced by a significant factor during the restart.

Algorithm 8.1: Expand a set of triplets to include aliasing triplets.
Given an NPSVD and error-bounds, this routine find intervals for singular values
of each triplets. It returns the triplets that aliases those in the wanted set.

H function inx = widen(inx , σ, f̂u)

σlo = σ + abs(f̂u); Maximum aliased singular value

σhi = max (σ − abs(f̂u), 0); Minimum aliased singular value

Max = max (σlo(inx )); Min = min(σhi(inx )); Find extreme bounds for requested triplets

inx = find((σhi ≤ Max ) ∧ (σlo ≥ Min)); Find aliasing triplets
J
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Although it is known that‖EU − ŝuf̂u‖ is small at the point of the restart, any
component in̂su corresponding to singular triplets ofA with large singular val-
ues, will be picked up immediately.

One way to improve this is to improve the rank-one approximation by taking a
power-step ofEU = AV̂ − ÛB̂. We note that this improvement is empirical,
and does not change any error-bounds, and is redundant in the absence of rounding
errors.

8.7 Singular value decomposition

We are now ready to attack the problem of computing the SVD of a large-scale
matrixA. For this we will assume thatA ∈ Cm×n wherem ≥ n. Otherwise we
may instead compute the SVD ofAH.

Our problem is to compute as many triplets, corresponding to the largest singular
values, with a restricted amount of memory. We note that computing the eigen-
decompositionV̂Σ̂2V̂ = AHA only needs to store vectors of lengthn, which
may be a very substantial saving.

This is a viable approach for relatively well-conditioned systems. For problems
that does not need singular values below about

√
εM , and have modest require-

ments about accuracy, this can be done efficiently using ARPACK [50].

As an example, assume thatn = 10000, whereasem � n is large. If the matrix
V̂ is stored as IEEE double-precision, then it can be stored in roughly1.6 GB of
memory. We should therefore be able to handle such a system on an off-the-shelf
desktop computer, regardless ofm.

Our goal is to compute the SVD as accurately as possible, without using more
resources than the scheme above. We also want to compute triplets beyond those
that will fit in memory.

The first thing to notice is that the first few singular triplets can be computed effi-
ciently by restarting. This requires storage of both left and right singular vectors,
and after convergence they will be returned to the user for whatever problem the
SVD is used to solve.

Since we do not have storage to keep these triplets in memory they must be re-
moved from further processing. However, these triplet will eventually reappear
because of rounding errors. Even in the absence of rounding errors they will reap-
pear, unless the removed triplets were exact. This would rarely be the case in any
iterative scheme.

8.8 Explicit deflation

One solution is to deflate the triplets. Basically, this amount to continue pro-
cessing on the matrixA′ = A − QUSQH

V, whereQU, S, andQV represents
converged triplets:

AQV = QUS + CU

AHQU = QVSH + CV
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According to the Schmidt-Mirsky theorem (see p. 150) this minimizes the norm
of A′, if the singular triplets are accurate. We shall refer to this astwo-sided de-
flation, since both the left and right singular triplets are explicitly kept orthogonal
to converged triplets.

Unfortunately, two-sided deflation stores all the converged triplets and does not
save memory. Nevertheless, the scheme remains useful as a component of a larger
strategy where only a few components are stored.

As an alternative we may turn toone-sided deflation:

A′ = A(I−QVQH
V)

= A− (QUS + CU)QH
V

= A−QUSQH
V −CUQH

V(8.2)

This is almost as good, since‖CU‖ is less than the tolerance we require for the
singular triplets.

It is necessary to ensure that changing the matrix does not disturb the restart.
We note that before restarting all triplets have been orthogonalized against each
other. It follows that all non-discarded tripletscould have been computed using
A′ instead ofA. It is therefore stable to move converged vectors intoQV before
restarting.

However, to keep the updates consistent we are required to compute all further
matrix-vector products usingA′ instead ofA. Otherwise the NPSVD will be
inconsistent, and unpredictable results may occur. While this represents a signifi-
cant amount of work in level-2 operations, it is acceptable ifn � m.

The second point is that we must ensure the accuracy of the remaining triplets. So
if Û, B̂, andV̂ is an NPSVD ofA′ we get:

A(I−QVQH
V)V̂ = ÛB̂ + EU

(I−QVQH
V)AHÛ = V̂B̂H + EV

This implies:

AV̂ = ÛB̂ + EU + AQVQH
VV̂

= ÛB̂ + EU +
(
QUS + CU

)(
QH

VV̂
)

(8.3a)

AHÛ = V̂B̂H + EV + QVQH
VAHÛ

= V̂B̂H + EV + QV(SHQH
U + CH

U)Û

= V̂B̂H + EV + QVCH
UÛ + QVSH(QH

UÛ)(8.3b)

Since we orthogonalize all vectors in̂V explicitly, we know that‖QH
VV̂‖ is neg-

ligible. However, it takes quite a bit of work to get a rigorous analysis of the
complete case. The theoretical underpinnings of one-sided deflation is developed
in appendix C, and we refer in particular to the orthogonality theorem on p. 152.

From a practical point of view, the result is that one-sided deflation is suitable for
the following purposes:

• Accurate singular values (i.e. no singular vectors).

• Low-rank approximations.
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• Any problem where orthogonality of the vectors in the long-space is unim-
portant.

8.9 Implicit deflation

Another option is to implicit deflatation, which has far more potential for memory
conservation. This is based on theorem C14 p. 152, which states that numerical
singular triplets are numerical orthogonal, provided they are accurate and have
different singular values.

In principle, we may keep a list of the singular values returned to the user, and
if we find a new triplet that correspond to the same singular triplet, then we sim-
ply discard it without returning it again. This is attractive, because it keeps the
storage requirement independent ofboth m andn, and does not introduce any
additional rounding errors. However, it suffers from two drawbacks: some triplet
may be missed and a very large number of matrix-vector products withA may be
required.

The first issue can be dealt with by observing that triplets converge roughly in de-
creasing order of singular values. However, if there are clustered triplets it takes
many iterations before a single triplet will split and resolve these individually. An
elaborate explanation of this phenomena can be found in [73].

We may deal with this by explicitly deflating a number of the most recently con-
verged triplets. This makes it very unlikely that any triplet will be glossed over,
but still avoid the need to keep all previous triplets in storage.

The other issue is more problematic, and arises from the fact that rounding errors
quickly generate components in directions corresponding to large singular values
as discussed in sec. 8.6.2. Unfortunately, there seems to be no other cure than
either deflating explicitly or accept a large number of matrix-vector products.

However, there are important applications where implicit deflation is useful. In
many applications the singular values ofA reaches a plateau. This is typical for
applications that depends on low-rank approximations, e.g. latent semantic index-
ing [6]. It is often interesting to know bothwhetherthe singular values eventually
starts to drop, and if they do, where. Implicit deflation can answer this question
in an inexpensive way.

We may then use implicit deflation as long as the largest implicitly deflated singu-
lar value is not too large compared to the remaining triplets. Theoretically, there is
no bound but in practice the number of matrix-vector products becomes excessive
if the range of implicit deflation is about a factor of 10.

8.10 Sliding window

The procedures described above can be combined into an aggressive restarting
strategy, which we shall refer to as “sliding window”. The idea is sketeched in
fig. 8.2: explicit deflation (one- or two-sided) is used to keep large singular triplets
from disturbing the computation (the head). Another set (the tail) is used to create
a gap of singular values. This allows a large number of triplets to be deflated
implicitly: any triplet with a singular value that exceeds the smallest implicitly
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Figure 8.2:
Sketch of a step
where a sliding
window is used to
compute the SVD
of a discrete Radon
transform.

singular value is removed from the restart (unless it aliases triplets in the sliding
window).

The best number of triplets to allocate for the head and tail depends on the prob-
lem at hand. The default behavior for the implementation in BBTools is to use a
tail for all requested singular triplets. Tuning these to the problem at hand may
significantly improve performance, but the other approach is very safe provided
the system has enough memory.

8.11 References

Most of the material on computer architecture can be found in text-books on nu-
merical linear algebra, e.g. [15] and [69]. Those who wants to implement their
own BLAS may appreciate the difficulties by looking at ATLAS (Automatically
Tuned Linear Algebra Software) [80].

The de-facto software package for numerical linear algebra with dense systems
is LAPACK [2]. There is also a more modern variant, ScaLAPACK, which is
intended for parallel computations [10].

Iterative computation of the SVD is supported by the following packages:

• ARPACK [50], described on p. 93, is written in Fortran. It forms the basis
of the MATLAB

-functionseigs andsvds .

• SVDPACK [7], by Michael W. Berry, contains several SVD-routines for
large-scale computations. The routines, described in [6], are written in For-
tran.

• PROPACK [47] includes Lanczos bidiagonalization with partial reorthogo-
nalization. The original report [46] did not contain implicit restarting, but
the software have now been expanded. The package exists for both Fortran
and Matlab.

It should be noted that PROPACK only includes the bidiagonalization procedure.
As should be evident from the contents of this chapter, using it for computing
SVDs may require some additional work.
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This chapter builds on the two previous chapters to produce algorithms that solves
linear systems. After treating the unregularized case, we show how regularized
solutions, based on filter-factors, can be estimated efficiently.

The chapter finish with a description of a practical hybrid solver that is suitable
for solving tomographic problems.

9.1 Prelude to iterative solvers

The goal of a linear solver is to determine a vector,x̂, so thatAx̂ ≈ b for a given
b. An iterative solver works by approximately solving a system for a residual:

(9.1) Ax̂i ≈ ri

This is initialized withr0 = b, i.e. the original problem. At stepi an approximate
solution,Aŷi ≈ ri is determined. Generally, this estimate may be quite poor, so
we update the equation system:

ri+1 = ri −Aŷi(9.2a)

x̂i =
i∑

k=0

ŷk(9.2b)

Applying eq. (9.2) repeatedly leads to the expression:

r0 = r̂1 + Ay0

= r̂2 + Ay1 + Ay0

= r̂N +
N−1∑
k=0

Ayk

= r̂N + Ax̂N−1

If ‖rN‖ is small, then we have determined an accurate solution to the system
Ax̂ = r0 = b as desired. This technique is sometimes used to combat rounding
errors for direct solvers, where it is known asiterative refinement[69].

The strength is that the approximate solution may be quite inaccurate, as long as
the residual norm is decreasing. To emphasize this, alg. 9.1 implements this by
using a random vector to approximate the solution. This is allowed as long as the
residual norm decreases in each step, which can be guaranteed by scaling.

Although simple, alg. 9.1 has most of the components necessary for an iterative
solver, including a stopping-criterion that suffice ifAx = b has a solution.
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9.2 Bidiagonalizing solver

The Lanczos bidiagonalization procedure, alg. 7.5 p. 87, is an excellent base for
an iterative solver. We shall use the left residual factorization described in sec. 8.3.
More precisely, the routines described in this chapter are based on the basic iter-
ation described in sec. 8.5. Therefore, the effect of rounding-errors will not be
addressed here.

Ignoring the rounding residual matrices, the basic iteration result in an NPSVD
on the following form:

AV̂ = ÛB̂ + ŝuf̂
H
u(9.3a)

AHÛ = V̂B̂H(9.3b)

Here the coupling-matrix is diagonal,̂B = diag(σ̂) = diag
( [

σ̂1, . . . , σ̂k

] )
,

and the singular matrices,̂U andV̂, have orthonormal columns to machine pre-
cision.

The trick is to create the NPSVD usingb as the starting-vector (e.g. usinĝu =
b = r0 in alg. 7.5 p. 87). After the update is complete, we have the following
relation:

(9.4) r0 ∈ span
( [

Û, ŝu
] )

On the other hand, we can use the NPSVD to determine the result of any approx-
imate solution on the form:

(9.5) ŷ0 = V̂ẑ0

Inserting in eq. (9.3a):

(9.6) Aŷ0 =
(
ÛB̂ + ŝuf̂

H
u

)
ẑ0

From this there are two main ways to selectŷ0.

Optimal (MINRES)

The MINRES algorithm (minimal residual) [73] is an algorithm which use Lanc-
zos tridiagonalization on a Hermitian matrixA = AH. It has been generalized
to the non-Hermitian case, where it is known as GMRES (generalized minimal
residual).

Algorithm 9.1: SolveAx = b iteratively using random approximations.
This program is the extreme case of a bad approximate solution. If the system
has a solution, the algorithm slowly converges to a solution with arbitrarily small
residual norm (ignoring rounding errors).

H function [x̂, r] = randsolve(A, b, tol)

[m, n] = size(A); x̂ = zeros(n, 1); r = b; Setup system

T = ‖b‖2 ∗ tol ; Determine stop criterium

H while ‖r‖2 > T

ŷ = randn(n, 1); p = A ∗ ŷ; Approximate solution by a random (!!!) vector

α = (pH ∗ r)/(pH ∗ p); ŷ = ŷ ∗ α; p = p ∗ α; Rescale to minimize residual

r = r− p; x̂ = x̂ + ŷ; Update residual and solution
J J
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It is based on the idea that̂y0 should be chosen to minimize the residual norm
‖r0‖. From a practical point of view, this can be accomplished by solving the
normal-equations on eq. (9.6) using Woodbury’s formula [69]. While this is gen-
erally unstable, it is stable and efficient if the NPSVD is in ortho-diagonal form.

In exact arithmetic, this procedure is equivalent to MINRES on the normal equa-
tions:

(9.7) AHAŷ0 = AHr0

The main problem with MINRES is that it requires anexplicit restart: once the
new residual is computed, the NPSVD can not be reused since eq. 9.4 fails to
hold. Instead, a new NPSVD must be created starting from the new residual.

Galerkin (Conjugate Gradient)

The deficiency of a MINRES restart leads us to look for a solution that allows an
implicit restart of the NPSVD. This can be accomplished via the Galerkin criteria:
ŷ0 is chosen sôr1 is orthogonal to the triplets removed during the restart. This is
equivalent to CGNR: the conjugate gradient on the normal-equations in eq. (9.7).

More specifically, consider the case where we want to remove tripleti from the
NPSVD. For this to work, the relation in eq. (9.4) must still hold after the restart.
To this end consider the following quantity:

uH
i r1 = uH

i (r0 −Aŷ0)By eq. (9.2a)

= uH
i r0 − uH

i

(
ÛB̂ + ŝuf̂

H
u

)
ẑ0By eq. (9.6)

= uH
i r0 − σ̂i(ẑ0)(i)(9.8)

The last relation follows from the orthonormality of the NPSVD. It follows that
the updated residual is orthogonal toui if we set(ẑ0)(i) = uH

i r0/σ̂i.

The Galerkin condition is justified in exact arithmetics where all search-vectors
are orthogonal as described in sec. 7.4 p. 85. Thus, if the residual is orthogonal to
all search-vectors, it must eventually be in the null-space of the operator.

In the presence of rounding errors, the reality is very different. If the conjugate
gradient fails to converge on a few (say, in 10–30 iterations), the search vector has
essentially lost any relationship with the starting vector. For fast convergence it is
therefore highly desirable to use the largest NPSVD that will fit in memory.

The Galerkin orthogonalization removes a component of the residual of norm
|uH

i r0|. This is substituted for a component in the search-vector of norm|uH
i r0| ·

|(fu)(i)|/σ̂i. It follows that the residual norm can not grow if the triplets discarded
during the restart satisfy|(fu)(i)| ≤ σ̂i. From sec. 8.6 p. 100 this means that the
singular vector has converged to a relative accuracy better than 1.

9.3 Unregularized solver

It is possible to combine the two restarting strategies in a single iterative solver.
Since it is numerically advantageous to keep an NPSVD as large as possible, we
can use implicit restarts as long as some singular triplets converges. In the un-
regularized case, it is always possible to limit the size of the NPSVD, since any
triplet may be discarded at any time.
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In practice, the difference between MINRES and Galerkin solutions are limited
for triplets that converges to a high relative accuracy, i.e.|(fu)(i)| � σ̂i. However,
a large-scale problems that runs over many iterations may build up a number of
triplets that converges very slowly. In this case, an explicit restart may give a
significiantly smaller residual norm than an implicit restart.

A simple solution is to monitor the norm resulting from using the two methods.
If an explicit restart result in a residual norm that is significantly better than the
Galerkin method, then such a step should be taken.

As an example, the default criteria used in BBTools is to use explicit restarting if
the residual norm can be improved by a factor of 2. There is no rigorous argument
for this, but it appears to work well in practice.

After a large number of iterations has been completed, the residual is stripped
for components corresponding to large singular values. These triplets are easily
identified from eq. (9.3b): the singular valueσ̂i is small compared to‖A‖2.

Even if |(fu)(i)| is large, these components should be removed from the residual.
Certainly, this should happen if̂σi ≤ τ , i.e. the accuracy of the matrix-vector
product, but applications may choose to use a much larger threshold.

9.4 Regularized solver

At this point we are equipped to deal with the regularized solver. From sec. 5.5
p. 58 we would like a solution to the systemAx̂ ≈ b written in terms of an SVD,
A = UΣVH using a set of filter-factors:

(9.9) x̂ =
∑

i:σi>0

vifi
uH

i b
σi

In the current setting, we are mostly concerned with Tikhonov regularization as
shown in fig. 9.1. In general, the filter-factors are most convenient to deal with
when the singular values are given on a logarithmic scale.
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There are two important things to note at this point:

• The regularized solution is linear in the filter-factors.

• The common filter-factors (see tab. 5.1 p. 59) are smooth if the singular
values are plotted on a logarithmic scale.
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This implies that the filter-factors can be interpolated linearly by sampling the
filter-factors sparsely on a logarithmic scale. In other words, we may keep a few
representative vectors instead ofV̂ and choose filter-factors (e.g. the regulariza-
tion constantλ) after the linear system has been solved.

This split the solving process into two separate steps:

• Pre-solve:solve the system using Galerkin orthogonalization, except only
triplets that has converged to an acceptable tolerance is used. Also, instead
of updating the solution, update the set of representative solutions.

• Post-solve: compute filter-factors, scale the representative solutions ac-
cordingly, and add.

The post-solving procedure is reduces to a matrix-vector product. On a modern
computer this is, for any practical purposes, instantaneous. This allows the solver
to be relatively expensive but still offers the user to adjust the regularization pa-
rameter interactively.

Generally, the singular triplets do not need to be very accurate, provided the filter-
factors do not change too rapidly as a function of the singular value. Theorem
C14 p. 152 guarantees that the numerical triplet is a sum of exact triplets and any
components far from the approximated singular value must be small.

For Tikhonov regularization it is usually safe to orthogonalize and discard triplets
that satisfy|(fu)(i)| < cσ̂i wherec ≈ 0.1. However, the required accuracy is
application dependent and should be tested empirically.

It should be noted that ifc is very small1, the solver is forced to converge all
singular triplets. In this case it may be more efficient, and memory conserving, to
compute the SVD using the algorithm described in chapter 8.

9.5 Hybrid solver

Unfortunately, the requirement for relative accuracy of the singular triplets may
prevent convergence. Generally, using a MINRES step is not an option, since the
singular triplets are inaccurate.

However, after a large number of iterations, the residual mainly contains contribu-
tions from noise and small singular triplets that can not be resolved. This property
hinges on thePicard condition[30]:

(Discrete Picard condition) Let A = UΣVH be an SVD of an operator, andDefinition 9.1:
let Ax = λ be the expected measurement (i.e. the result measured in absence of
noise). Then the discrete Picard condition is satisfied if the elements|UHλ|(i)
decays faster thanσi for sufficiently largei.

Roughly speaking, the discrete Picard condition is satisfied ifx has limited band-
width, as argued in sec. 5.2 p. 55.

Furthermore, the unconverged singular triplets tends to correspond to small sin-
gular values. This occurs because any component corresponding to large singular

1This is, for example, required for a truncated SVD.
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values are picked up in a few iterations and is decoupled from the remaining com-
ponent.

The last property implies that if a numerical triplet is expanded into components
of exact singular triplets, then the singular values of the exact triplets tends to be
much smaller than the numerical singular value of the triplet.

Therefore it is not dangerous to end the procedure with a MINRES step, and ap-
ply filter-factors according to the estimated singular values. This result in ahybrid
method[30] where the exact algorithm used influence the result.

In practice, the number of steps required before the difference between the hybrid
and true Tikhonov solution becomes negligible is problem dependent. Generally,
the scheme works best if the norm of the measurement-noise is on the order of a
few percent or more of the noiseless measurement, as is the case for most tomo-
graphic problems.

9.6 References

The literature on iterative solvers is vast because of the large number of practi-
cal applications. A pedagogical text-book that describes Krylov methods is [73],
while a more complete references that includes algorithmic details is [4]. A good
review with historical notes is [61].

Another text-book is [15], which also includes several Krylov methods and sev-
eral other methods and references. It also raises the noteworthy point that Krylov
methods are no panacea, and methods such as multi-grid may be more suitable
for some applications.

One of the most successful general solvers is LSQR developed by Paige and Saun-
ders [55]. The paper also includes an excellent discussion of bidiagonalization.

Hybrid methods are described in [30], which also include many references. The
current knowledge is centered around methods where some results of early stop-
ping is known.

The idea that, say, 1000 iterations is small compared to the size of the operator
is not an ordinary theme in the literature. Hybrid methods are, at the moment,
associated with some amount of handwaving. The author is unaware of any hy-
brid method that guarantees a solution that can be expressed independently of the
algorithm in the presence of rounding errors.
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BBTools is a toolbox for MATLAB
 implementing the algorithms described in the

previous chapters and much more. It represents a major part of the work produced
during the PhD.

This chapter is intended to be self-contained, and may be regarded as an introduc-
tion to BBTools.

10.1 Introduction to BBTools

BBTools, or black-box toolbox, is a collection of routines for MATLAB
 that im-

plements almost everything discussed in the thesis in a way that should be acces-
sible for most people familiar with MATLAB

.

The main focus of BBTools is to handle inverse ill-posed problems such as tomo-
graphic problems. However, the routines are general and can be used for a number
of purposes, including:

• Inverse problems, regularized solutions of ill-posed problems and SVD
analysis.

• Data mining, dimensionality reduction of large data sets.

• Iterative methods, research in algorithms based on Krylov subspaces.

The main reason the toolbox exists is that it can cope with problems that are much
larger then any software package available to the author. It has been designed to
utilize the available memory as much as possible.

The meaning of a black-box

In the context of BBTools, a “black-box operator” (or simply “black-box”) is a
set of functions that implements the matrix-vector productsAx andAHx. Here
A is the operator andx is a normal MATLAB

 vector (or matrix).

It can be useful to think of a black-box as an extension of sparse matrices. How-
ever, instead of being a “matrix with a lot of zero elements”, a black-box is “any
matrix where matrix-vector products can be computed efficiently”. This class of
operators is much broader than sparse matrices.

The operator is a “black-box” because the algorithms used to compute the prod-
ucts are known only to the implementation. The internal representation of the
operator may have little resemblance with the elements of the matrix with the
same linear transform.

The functionbbconvn creates an operator whose internal representation con-Example 10.1:
sists of a Fourier transform of the convolution kernel. Fortunately, neither the
user nor BBTools need to know this fact. (Except, of course, forbbconvn , which
is part of BBTools).
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How BBTools helps

In BBTools, the set of functions is encapsulated in an object that can be treated
like a MATLAB

-matrix in many cases. In most other packages (including func-
tions shipped with MATLAB

 such aslsqr ), a black-box operator must be given
as a function (or set of functions).

Since a black-box can be manipulated like an ordinary MATLAB
-matrix, it is usu-

ally much easier to create and/or change an operator. Instead of reinventing the
wheel, things such as Kronecker products and concatenations are available using
the normal MATLAB

 syntax.

Furhermore, BBTools provides a set of standard black-boxes to use as a start-
ing point. This includes convolutions, Hadamard matrices, and basic operators
such as zeros, diagonal matrices, and identity operators. Anyone familiar with
MATLAB

 knows how even simple operators can simplify a complex task.

The more general question “where do black-box operators come from?” is really
two different questions:

1. Where do nature create problems with exploitable structure?

2. Where do the black-box operators used in BBTools come from?

We answer the first question with a quotation from [73]:

Large matrices . . . usually arise indirectly in the discretization of dif-
ferential or integral equations. One might say, that ifm is large, it
is probably an approximation to∞. It follows that most large ma-
trices of computational interest are simpler than their vast number of
individual entries might suggest.

The second question is addressed in sec. 10.2.

How black-box operators can be utilized

Black-box operators are only useful if they can be used to solve a problem. Al-
though a matrix-vector product may be a useful operation in itself, there are many
important iterative algorithms that are based solely on this operation.

From a practical point of view, the most useful procedures involves so called
Krylov subspaces. BBTools is focused on the following problems:

• Solving large-scale SVD-problems.

• Computing regularized solutions to large-scale linear problems.

Theoretically, any operation performed on a matrix could be performed on a
black-box operator. This is possible because the matrix corresponding to the lin-
ear transform can be computed using the matrix-vector product. From a pragmatic
point of view, this would defeat the purpose of using black-box operators.

10.2 Central features

The fundamental unit in BBTools is the black-box operator. From this starting-
point, BBTools targets 4 key areas in linear algebra.
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Creating and manipulating operators

The fundamental idea in BBTools is to encapsulate linear operations in opera-
tors. BBTools sports a number of features for creating and working with such
operators:

• Library of operators: Many common operators are included to provide
a starting point. Although some of these may occasionally be sufficient to
model real-world problems, most operators are meant to provide “building-
blocks, not solutions”. Most functions available in BBTools is provided in
appendix D.

• Operators can be combined: Creating operators by combining simpler
ones is standard in MATLAB

, but BBTools supports huge operators by stor-
ing an evaluation tree rather than explicit elements. This is transparent to
the user.

• Support for custom operators: Operators can be highly specialized and
require large programs to implement efficiently. If such programs are em-
bedded in a black-box, they can be manipulated which often leads to better
modularization and reuse of code.

• Support for testing operators: When complex operators are implemented,
it is useful to have a set of standard functions for testing the correctness of
the algorithms. This is a natural part of BBTools.

SVD Analysis

The singular value decomposition (SVD) is one of the most important tools for
analyzing linear systems. It forms a cornerstone of BBTools, due to its strong
connection with regularized solutions of linear systems.

In its simplest form, the functionbbsvds can replacesvds in the common case
where some of the triplets corresponding to the largest singular values are desired.
It is usually faster, partly becausesvds does not utilize ARPACK in the most ef-
ficient way, and partly because BBTools is designed to exploit modern hardware
more efficiently.

A bit more under the hood, we find some more drastic differences:

1. bbsvds computes singular values with an amount of memory that scales
asO(m + n + min(m,n)k), wherek is the number of requested singu-
lar values. Although many packages can do this, BBTools do so without
compromising the accuracy.

2. bbsvds can often compute more singular values/triplets than will fit in
memory. This is accomplished without swapping data to and from disk;
BBTools does not contain out-of-core routines. Instead, it works by trading
memory for computational work. Rounding-errors may prevent BBTools
from computing a full SVD of a large operator, but the extension can be
very useful.
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Computing singular values is easier than full singular triplets. If singular vectors
are required, BBTools will normally use memory that scales asO((m+n)k). The
last point remains true: it is still possible to compute more triplets than memory
can hold.

Solving ill-posed problems

The goal of a large linear problem is often to solve the system on the form
Ax = b. Unfortunately, the system-matrixA is ill-conditioned in many practical
problems andb have measurement-, rounding-, and representation-errors.

Regularization deals with these problems. BBTools is concerned with solutions
that can be expressed in terms of an SVD ofA and a set of filter factors. This
includes many standard techniques.

Unfortunately, the SVD ofA is infeasible to compute in practice, and we must
resort to approximate methods. BBTools accomplishes the task in two steps:

1. bbpresolve An iterative solver, except the result is not returned as a
vector (bbsolve can do that). Rather, the solution is split into a number
of solutions, each corresponding to a set of local filter-factors.

2. bbregsolve Form a regularized solution by approximating the wanted
filter-factors as a sum of the local filter-factors. The solution,x, is then a
weighted sum of the solutions computed bybbpresolve .

It is typically necessary to compute a number of regularized solutions in or-
der to balance noise and accuracy. The L-curve method (bblcurve ), for in-
stance, requires a number of of such evaluations. BBTools supports this effi-
ciently: bbregsolve costs almost nothing when it is fed with the output from
bbpresolve .

The solver in BBTools is primarily intended for ill-posed problems. When a “real”
(i.e. unregularized) solution is meaningful, it may be better to use other routines.

Note that preconditioning destroys the singular values of the operator, and there-
fore regularization. As a consequence, the code was developed to cope with more
iterations than other solvers normally expect is necessary.

Iterative routines

Black-box operators generally require iterative routines, and both the SVD rou-
tines and solvers described above are iterative. However, some problems are al-
ready handled well by existing MATLAB

 routines. For instance, a function like
eigs is excellent.

There are several cases where one may want to use the iterative solvers shipped
with MATLAB

:

1. An accurate, unregularized, solution is required.

2. A test-battery of algorithms is needed for comparison or benchmarking.

3. A known algorithm must be used to allow reproducible results.

BBTools supports most iterative routines shipped with MATLAB
.
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Research in iterative routines

Since the 1960s we had libraries of canned routines for most dense problems in
linear algebra [17]. The libraries have been rewritten to match the technology; we
went from LINPACK and EISPACK to LAPACK [2], and later ScaLAPACK [10]
emerged.

As computers get faster, we expect to handle larger problems, and this eventually
leads to more use of iterative routines [73]. The literature is extensive, and many
iterative solvers have been proposed; a good introduction can be found in [61].

Such a plethora exists because there is no single algorithm that consistenty beats
the competition. No canned routine have emerged where we can leave its imple-
mentation to specialist and envoke withA\b, trusting that it “just works”.

BBTools should be helpful with research of such algorithms. For instance, it al-
lows one to evaluate the effect of degraded accuracy and count products without
changing the code of the solvers.

However, the most important aspect of BBTools is perhaps that it allows the end-
user a familiar entrance to the iterative routines. The popularity of MATLAB

 can
be seen as an example of the importance; most of the functionality in MATLAB

 is
available as free libraries on the Internet. Nevertheless, MATLAB

 is the de facto
language for research in numerical linear algebra.

10.3 Working with black-box operators

BBTools is rooted in the idea that any linear transformation can be represented
as an operator that acts on a column-vector1. While this may sound innocent, it
implies a mental model that may be unfamiliar to many.

In most cases we do not think much about the meaning of a “matrix”. To work
efficiently with BBTools, it is advantageous to distinguish between operators (lin-
ear transforms) and hypercubes (data arrays). The most immediate consequence
of the policy is that any matrix/array must be converted to a column-vector before
an operation can be applied.

Assume thatIMG is an 100 × 100 image. An operation might traditionally doExample 10.2:
something like the following:

IMG2=5*IMG(1:50,20:90);
IMG2=convn(IMG2,K);

Using BBTools this would instead look something like this:
[A1,dim1]=bbredim([100,100],[1,20;50,90]);
[A2,dim2]=bbconvn(dim1,K);
A=A2*5*A1;
IMG2=reshape(A*IMG(:),dim2);

This may look unnecessarily complex, but it has the advantage that the steps are
captured inA. This allows us to pass it as an argument to a function, which can be
blissfully ignorant thatIMG represents an image.

1One may also use row-vectors provided it is used consistently. This is often preferred by statisti-
cians [52].



i
i

i
i

i
i

i
i

118 BBTools

Continuing the last example, apply the adjoint operator onIMG2:Example 10.3:
IMG3=reshape(A’*IMG2(:),dim1)

While the adjoint could be worked out in a simple example like this, BBTools
made it trivial because the adjoints of the two sub-functions has been worked out
once and for all.

Matrices as operators

The word “operator” is usually defined (in the current context) in a way similar to
the following [25]:

. . . any symbol that indicates an operation to be performed.

That is, an operator is not a passive table of elements; rather it is something active
like a function. This view is sometimes helpful in understanding BBTools.

Let us go back to basics: linear operators are functions that map a vector-space to
another linearly. That is,T is a linear operator if it satisfies the following for all
x̌, y̌ in the input domain and scalarsc:

T (x̌ + y̌) = T (x̌) + T (y̌)(10.1)

T (x̌c) = cT (x̌)(10.2)

When the input and output domains of a linear operator have finite dimensions,
then any element, say̌x, in the vector-space can be written in terms of a basis:

(10.3) x̌ = x1b̌1 + x2b̌2 + · · ·

As long as the basis is given, we may refer tox̌ by giving the coefficients (or
coordinates) of this basis. These are conveniently represented by a vector of co-
ordinates:x.

Any linear operation that maps a column-vector to another may be described
uniquely in the form of a matrix. The transformationy̌ = T (x̌) may be computed
as a matrix-vector producty = Ax.

It is a good idea to keep in mind that an object is represented by a vector in terms
of a basis. In many cases the vector is simply related to the basis, and is is easy to
forget it exists. If an object is an image, for example, each element may refer to a
pixel.

Matrices as containers

Matrices are used for other things than describing linear operators. A matrix may
hold any kind of data which can be stored in a 2-dimensional table. Common ex-
amples are images and pairwise relations such as correlation coefficients, forces,
distances, etc.

BBTools is primarily concerned with data when operators are acting on them.
Consider an image where the some common editing is wanted, say cropping or
sharpenening. Although BBTools can create operators that performs such opera-
tions, it does not understand the notion of an image.
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To apply the operation the data must be in canonical form, i.e. a vector. That is, a
data-matrix it must be expanded in terms of a basis before BBTools can do any-
thing with it. We shall use the term hypercube to emphasize that data-matrices and
other arrays are the same to BBTools. We could have used a number of different
words:

1. Hypercubes

2. Multi-dimensional arrays

3. Data matrices

To confuse matters further, a matrix may also represent a collection of column
vectors, e.g.X =

[
x1, x2, · · ·

]
. In this case an operator may be applied en

masse:AX =
[
Ax1, Ax2, · · ·

]
.

It may occasionally be difficult to determine what category a matrix belongs to.
From a practical point of view it usually suffice to distinguish between operators
and data-arrays.

Advantages and disadvantages

BBTools assumes that linear transformations are applied by creating an operator
and applying it to the data, which has the form of a vector. There are several
advantages with this approach:

• The implementation of an operator is separated from its invokation. This
allows one to use standard routines and concentrate on the modelling prob-
lem (i.e. creating the operator) rather than the algorithms required for their
solution. item Hypercubes are treated as any kind of data. BBTools does
not care if a vector represents a rectangular image, a round one, or contains
holes.

• Algorithms can be closer to their “text-book” versions than what is nor-
mally seen in practical code. This speeds up development, makes it rela-
tively easy to analyze an algorithm, and facilitates debugging. The algo-
rithms shown in this thesis are examples of this concept.

• Vectors are stored in matrices that can be manipulated via high-performance
BLAS (see sec. 8.2 p. 96).

• The creation of “the adjoint operation” (i.e. computingAHx) only needs to
be considered at the level of fundamental building-blocks. Operators build
from these automatically supports this operation.

• BBTools keeps track of the accuracy of the matrix-vector product,τ . Again,
this only needs to be determined at the level of building-blocks. If neces-
sary, the accuracy can be estimated from the operator directly.

The downside is that it is necessary to handle data manually. One of the more
annying examples is the necessity to keeping track of the dimensions of a hy-
percube. Functions that create operators corresponding to actions on a hypercube
(e.g.bbconvn ) often require the dimension as an input argument and often return
the output dimension as a result.
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10.4 Compatibility

One of the major design-goals was to be as compatible with MATLAB
as possible.

Once a black-box has been created, it should act as closely as possible as an ordi-
nary matrix. BBTools was designed to blend in with ordinary MATLAB

programs
as unobtrusively as possible.

The main computations that black-boxe operators lacks is operations that works
on individual elements. This implies that functions such asabs andA.ˆc ) are
not supported.

Operator combinations

Many common manipulations of MATLAB
-matrices are supported by BBTools,

as shown in tab. 10.1. While the list may appear short, it covers the majority of
the operations used in practical programs.

Syntax Function Description
A+B plus(A,B) Addition
[A,B] horzcat(A,B) Horizontal concatenation
[A;B] vertcat(A,B) Vertical concatenation
A/c mrdivide(A,c) Division by scalar
A.’ transpose(A) Transposition
A’ ctranspose(A) Complex conjugate transpose
+A uplus(A) Unary plus
-A uminus(A) Unary negatation
A*B mtimes(A,B) Matrix multiplication (see below)

feval(A,B) EvaluateA*B (discouraged)
feval(A,B,’transp’) EvaluateA’*B (discouraged)
conj(A) Complex conjugate
real(A) Complex real part
imag(A) Complex imaginary part
kron(A,B) Kronecker tensor product
repmat(A,...) Replicate and tile an operator

Table 10.1:
Basic operations
compatible with
black-box opera-
tors.

Matrix multiplication

Matrix multiplication is supported via the normal syntaxA*B and the correspond-
ing functionmtimes(A,B) . However, to maximize compatibility there are spe-
cial rules that applies to this product:

1. If either A or B is a MATLAB
-matrix, the product will be evaluated and

returned as a normal MATLAB
-matrix.

2. If eitherA or B is a scalar, which can be interpreted as a1× 1-matrix, then
the product will also be evaluated.

3. In any other case it returns a black-box operator corresponding to the prod-
uctA*B.

The convention allows a black-box operator to replace a MATLAB
-matrix in many

circumstances. IfA is a black-box operator andx is a normal matrix, thenA*x



i
i

i
i

i
i

i
i

121

evaluates the matrix-vector product, whileA*blackbox(x) creates a black-box
operator.

If a black-box is desired without evaluation, the functionbbprod may be used in-
stead ofmtimes . This is guaranteed to return a black-box operator. Conversely,
bbmult always return a MATLAB

-matrix. However, this is not possible if both
inputs are black-box operators.

The forms usingfeval exist for compatibility purposes only. While this allows
black-box operators to be used with some existing programs, the use should be
discouraged.

Complex operations

BBTools supports complex operators everywhere. However, ifA is a complex op-
erator, thenB=real(A) or B=imag(A) creates an operator that evaluates two
matrix-vector products withA to evaluate a matrix-vector product withB. If these
functions are nested inside each other, this may lead to exponential explosion.

Operator information

The ordinary functions used to get basic information about an operator are also
supported, as shown in tab. 10.2. However,disp , display and, by extension,
the result printed by a computation that evaluates to a black-box operator, is not
the elements of the matrix but the evaulation tree.

Function Description
size(A) Dimension of operator
isreal(A) true if A is real
isa(A,str) true if A is of typestr
disp(A) Display evaluation tree (as text)
display(A) As disp , except the variable name is printed

Table 10.2:
Basic information
about a black-box
operator.

One of the most complex functions in BBTools isbbrescale , which creates aExample 10.4:
black-box that rescales a hyper-cube to one with another dimension. For exam-
ple, the commandA=bbrescale([100,100],[200,200],’spline’)
creates an operator,A ∈ R(200·200)×(100·100) = R40000×10000, that scales a
100 × 100 image to200 × 200 using cubic spline interpolation. The command
disp(A) prints the following evaulation tree:

kron 40000x10000
> prod 200x100
| > matrix 200x200 (sparse)
| > collage 200x100
| > eye 100x100
| > prod 100x100
| > inverse 100x100 (LU substitution)
| > index 100x100
| > matrix 100x100 (sparse, central difference)
> prod 200x100

> matrix 200x200 (sparse)
> collage 200x100

> eye 100x100
> prod 100x100

> inverse 100x100 (LU substitution)
> index 100x100
> matrix 100x100 (sparse, central difference)

A more traditional (and less informative) rendition is given in fig. 10.1.
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Evaluation tree
kron

prod

matrix

collage

eye

prod

inverse index matrix

prod

matrix

collage

eye

prod

inverse index matrix

Figure 10.1:
Evaluation-tree for
an operator created
by bbrescale .

Norms

Analysis of linear systems often start with norms. While BBTools has powerful
functions for SVD-analysis, the ordinary functions in MATLAB

 also works with
black-boxes as shown in tab. 10.3.

Function Description
norm(A) Compute norm of an operator (2-norm only)
normest(A) Rough estimate of 2-norm
normest1(A) Good estimate of the 1-norm

Table 10.3:
Analysis support of
black-box opera-
tors.

The exception is the Frobenius norm. While this norm is often used because it
is easy to compute for matrices (sparse or full), black-box implementations rely
on iterative procedures to accomplish the same task. Unfortunately, it is diffi-
cult to estimate the Frobenius-norm reliably, and the author is unaware of good
algorithms that can accomplish this task in the general case.

Note: BBTools includes the functionbbnormest , which should be used instead
of normest . It supports both 1-, 2-, and∞-norms, and usually provides a much
better accuracy for substantially less work thannormest .

The functionnorm reverts tobbnormest with a warning for the 1- and∞-
norms. Althoughbbnormest (which is, in turn, based onnormest1 ) is usu-
ally very accurate, there are rare cases where it may fail.

Iterative routines

Some care have been taken to allow the iterative routines shipped with MATLAB


to work with black-box operators. MATLAB
 usually assumes that these functions

are intended for sparse matrices, but they work for black-box operators as well.

Function Description
eigs Find a few eigenvalues and eigenvectors
svds Find a few singular values and vectors
lsqr Conjugate Gradients on the Normal Equations
bicg BiConjugate Gradients
bicgstab BiConjugate Gradients Stabilized
cgs Conjugate Gradients Squared
gmres Generalized Minimum Residual
minres Minimum Residual
pcg Preconditioned Conjugate Gradients
qmr Quasi-Minimal Residual
symmlq Symmetric LQ

Table 10.4:
Iterative routines
supported by
BBTools (parame-
ters are omitted).
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Miscellaneous

Finally, tab. 10.5 lists a few miscellaneous functions that do not fit in any of the
previous categories.

Function Description
sum(A) Column sum (or rows)
mean(A) Column average (or columns)

Table 10.5:
Miscellaneous
functions sup-
ported by BBTools.

10.5 References

BBTools, and its manual, is freely available online [33]. Once installed, the docu-
mentation is available in the MATLAB

environment similar to the toolboxes avail-
able from Mathworks. A list of most functions provided by BBTools is given in
appendix D p. 157.

The toolbox “Regularization Tools” [29], by Dr. Per Christian Hansen, is a fairly
complete toolbox for MATLAB

, and contains numerous tools and test problems.
It is very useful for people who wants an introduction to the topic of regularization
and ill-posed problems. The software and its manual are available online together
with a tecnical report [31].

The toolbox is mainly concerned with techniques for small dense systems. There
are, however, a few iterative routines and some functions which work indepen-
dently of the solutions (e.g. computation of filter-factors).

The MATLAB
-toolbox MOORE Tools offers a different approach to implement

operators [38]. Instead of considering an operator as a black-box, it uses object
oriented programming. That is, an operator is implemented as a class, and is not
limited to matrix-vector products. In fact, the operations supported by MOORE
Tools increase with the capabilities a particular class implements.

Both BBTools and MOORE Tools can combine operators in an evaluation tree.
However, the main emphasis of MOORE Tools is abstraction and infrastructure,
whereas BBTools is efficiency, minimalism, and problem solving.

For example, MOORE Tools does not require an explicit conversion between
hypercubes and vectors; it understands the difference once the class has been im-
plemented. On the othert hand, it is not necessary to teach BBTools there is a
difference.

Someone who mainly use BBTools to combine operators, or is looking for a
framework for implementing general methods, may be served best by MOORE
Tools. On the other hand, BBTools may be preferable to someone who wants to
solve a specific problem.
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Finally, we present the results of using regularized reconstruction. We do so using
the phantoms from chapter 3, and compare the regularized reconstruction with the
traditional methods.

Since the goals described in chapter 5 do not lend themselves to quantitative anal-
ysis, the reconstructed images must stand on their own. Hopefully, the power of
regularized reconstruction is evident from these images.

11.1 Introduction

One thing might as well be admitted from the start: the method chosen in chapter 5
was not chosen to optimize quantitative accuracy. This brings up to the disturbing
fact that an analysis of the quantitative accuracy is pointless; much better methods
for this purpose can be found in the literature.

Therefore, the only results given in this chapter will be images produced by the
algorithms. While this may be disappointing for those who are mathematically
oriented, it is good news for the medical users targeted in this project: there will
not be any mathematics in the chapter.

The starting point is the Shepp-Logan phantom introduced in chapter 3. For con-
venience we reproduce it in fig. 11.1

Phantom 2

0

0.5

1

1.5

Figure 11.1:
The classical
Shepp-Logan
phantom repro-
duced from fig. 3.2.

11.2 Low-count reconstruction

Starting with the most difficult case, we return to the case where only20, 000
counts are acquired. This represent a typical scenario in SPECT, where it is typ-
ical to acquire about500, 000 counts in medical scanning. In 2D reconstruction,
these counts are distributed on a number of slices, which is determined by the size
of theacquisition matrix.



i
i

i
i

i
i

i
i

128 Results

In the current scenario, the acquisition matrix typically consists of64 slices. How-
ever, the central (and most interesting) slices will usually get more counts that the
outer slices. A typical reconstruction of a slice using filtered back-projection is
shown in fig. 11.2.

FBP reconstruction
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1.5

Figure 11.2:
The sinogram in
fig. 3.12 recon-
structed using FBP.

Envoking BBTools, we may reconstruct the same image using Tikhonov regular-
ization. Since we intend to apply a post-filter with a Gaussian kernel, the regular-
ization parameter should deliberately be chosen to provide an under-regularized
solution. For the current example1, the result may look like fig. 11.3.

Tikhonov reconstruction
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1.5

Figure 11.3:
An under-
regularized re-
construction of
fig. 11.2.

As described in sec. 9.4 p. 110 this is a two-step procedure: first a computationally
expensive presolving procedure is performed, and then the regularization-constant
can be chosen interactively.

After applying a post-filter, which was chosen to match the resolution of the FBP-
reconstruction in fig. 11.2, the under-regularized image (fig. 11.3) is transformed
into fig. 11.4. At this point it might be useful to refresh one of the goals from chap-
ter 5: the reconstruction algorithm should be backwards compatible, i.e. it should
be possible to reconstruct images that are similar to the traditional algorithm.

1The regularization-constant was chosen according to the L-curve criteria [30], which occurs
aroundλ ≈ 0.021‖A‖2 in this case. However, we shall generally assume that the parameter is
fixed or chosen interactively.
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Tikhonov with post−filter

0

0.5

1

1.5

Figure 11.4:
As fig. 11.3, but
with a Gaussian
post-filter to imi-
tate fig. 11.2.

To judge whether this goal has been achieved, we merely need to compare whether
fig. 11.2 and fig. 11.4 are similar. Those who agree they are similar also agree that
the algorithm is backwards compatible as desired.

Comparison of point-spread functions

As we also mentioned2, in chapter 5, there would be no progress if backwards
compatibility was the sole goal; in that case we might as well use the old algo-
rithm in the first place.

However, a closer look on the two algorithms do reveal a difference. Recall that
a point-spread function (PSF) is the reconstructed image of a point in absence
of noise. A number of point-spread functions for the FBP-reconstruction that
produced fig. 11.2 are shown in fig. 11.5, while the same PSFs corresponding to
fig. 11.4 are shown in fig. 11.6.

Comparing these we may draw two conclusions:

1. The PSFs of post-filtered Tikhonov-reconstruction are more homogeneous
compared to FBP. This is most expressed near the edges.

2. The negative values are reduced.

Both are very desirable goals.

Comparison with EM

The comparison would be incomplete without including an EM-reconstructed
image. Since the EM-algorithm is non-linear, and the PSFs would therefore be
meaningless, this comparison can only be performed on images.

To make the comparison as fair as possible, the EM-image in fig. 11.7 was recon-
structed using the same post-filter as the Tikhonov image in fig. 11.4. Although
a sieved image might yield slightly different result, choosing a set of parameters
would be a subjective choice.

2Section 5.4 to be precise.
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PSFs for FBP
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Figure 11.5:
Point-spread func-
tions for the re-
construction in
fig. 3.12.

PSFs for Tikhonov with post−filter
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Figure 11.6:
As fig. 11.5, but
using regularized
reconstruction with
post-filtering.

At first sight, the EM-image may appear “nicer” than the other images. However,
it is questionable whether it actually contains more information. There is also a
tendency to create false features that look natural.

Perhaps the one quality that makes the EM-image look better is that it does not
contain negative counts. We have consistently shown the negative values also, but
for the purpose of comparison, fig. 11.8 is clipped so negative values are black. It
is now much more questionable whether the EM reconstruction, fig. 11.7, offers
a significant advantage over FBP in fig. 11.8.

Envoking Tikhonov

When we are assured that we can approximate the FBP-algorithm closely, it is
interesting to see the effect of the Tikhonov regularization. At this point we have
two options:

• Suppress more noise at the same resolution.

• Increase resolution at the same noise-level.

The image in fig. 11.9 shows an example of more noise-suppresion. In this case,
the regularization-constant was set10 times higher than the previous image. The
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EM with post−filter

0

0.5

1

1.5

Figure 11.7:
As fig. 11.12, but
reconstruction
using the EM-
algorithm with
the same post-filter
used in fig. 11.3.

Clipped Tikhonov
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Figure 11.8:
A reproduction of
fig. 11.3, except
negative values
have been clipped
to zero.

noise has been suppressed as desired, without any obvious loss of resolution.

Tikhonov with post−filter
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Figure 11.9:
As fig. 11.4,
but with a
regularization-
constant that is
10 times higher.

Tikhonov regularization suppress noise by making the images less extreme. While
this avoids artifacts, it also tends to make real features hard to detect.

Another possibility is to increase the resolution once the noise has been sup-
pressed. For specificity, we shall use a post-filter with twice the resolution, i.e.
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the FWHM of the PSFs is halved. The result is shown in fig. 11.10, which shows
that the resolution is improved as desired.

Tikhonov with post−filter
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Figure 11.10:
As fig. 11.9, except
the resolution has
doubled.

The reconstruction parameters on these examples were chosen without any rigor-
ous criteria. While this is a weakness, there are only two parameters: the reso-
lution and noise-suppression. Both may be selected while the image is updated
interactively.

11.3 Medium-count reconstruction

We now turn to a scenario that lies in between a low-count and high-count sce-
nario. While we use the same phantom, for easy comparison, we will work with
a measurement where about100, 000 counts are acquired as shown in fig. 11.11.
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Figure 11.11:
Sinogram of the
Shepp-Logan
phantom with
approximately
100, 000 counts.

While this number of counts is difficult to achieve in clinical SPECT, it is very
low for a PET-scanning. However, it is easier to see the effects of reconstruction
when a limited number of counts are used, and it is a more difficult problem; if
the low-count problem can be handled, then the high-count problem is easy.

For comparison, fig. 11.12 shows a FBP-image, reconstructed to match the resolu-
tion in the Tikhonov-enhanced image in fig. 11.10. Again, this can be imitated by
an appropriate filter (fig. 11.13) and the resolution can be increased by suppressing
extremes (fig. 11.14).
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FBP reconstruction

0

0.5

1

1.5

Figure 11.12:
A FBP-
reconstruction of
the sinogram in
fig. 11.11.

Tikhonov with post−filter
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Figure 11.13:
Post-filtered regu-
larized solution to
imitate fig. 11.12.

Tikhonov with post−filter
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Figure 11.14:
The same as
fig. 11.13, ex-
cept more filtering
is performed us-
ing regularization
and less by post-
filtering.
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11.4 Using anatomy in reconstruction

So far we only mentioned anatomy in chapter 5, where it was stated that it would
be easy to incorporate this into the reconstruction. It is time to make good on this
promise.

First, we need to define a set of anatomical regions that are known to have constant
concentrations. In a real workflow, this would typically be accomplished either
by drawing regions on another set of images, e.g. MR, or using a template. In
this example we cheat, and use regions based on the original phantom as shown
in fig. 11.15.

Anatomical regions

0
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4

Figure 11.15:
Anatomical re-
gions as they might
have been defined
by a user. Re-
gion 0: nothing is
assumed, Region 1:
known to be zero,
Region 2,3,4: con-
stant.

The regions shown in fig. 11.15 are well within the region on the original phan-
tom. That is, the regions are “safe” and need not be perfectly delineated. In this
sense, the example is realistic.

As described in sec. 5.6 p. 61, we may now reconstruct the image under the
constraints defined by the regions. An under-regularized solution is shown in
fig. 11.16. Clearly, the constrained regions are large enough to be determined
accurately.

Restricted reconstruction

0

0.5

1

1.5

Figure 11.16:
Underregularized
solution to de-
termine the con-
centration of the
anatomical regions.

Finally, the known regions may be subtracted out while the remaining image is
reconstructed using a more regularized filter. This leads to fig. 11.17, which is
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the culmination of the project: a tomographic image reconstructed using anatomy
and regularization.

Final reconstruction

0

0.5

1

1.5

Figure 11.17:
The final image, re-
constructued using
the anatomy and
regularization.
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Conclusion

After a general introduction to the scanners used in emission tomography, we
identified the main weakness of the current image formation methods: the resolu-
tion.

Currently, nearly all images in emission tomography are produced using either
filtered back-projection (FBP) or expectation maximization (EM), both of which
have been available for a long time. Much work has been done to improve these
algorithms, but penetration into the medical fields has been limited.

Traditionally, the criteria used for success has been to reduce a residual 2-norm,
energy, root-mean-square, or other equivalent measure. Instead, we identified a
number of requirements posed by the intended users. This resulted in a list where
the traditional criteria did not figure prominently.

Many, or even most, of these objectives are either unmeasurable or prohibitively
expensive and longwinded to test. In order to make progress, the method to be
developed was required to be backwards compatible. Since images obtained by
a classical method can be imitated, this would ensure that the new method would
be acceptable for the user community.

To this end, regularization via filter-factors was chosen as the method to be pur-
sued. It was proved that methods in this class remained competitive with a much
larger class of algorithms, even if only the residual is considered.

We continued by developing numerical algorithms to compute the solutions. Al-
though regularization is textbook material, implementing a viable algorithm was
challenging. Nevertheless, an algorithm was developed where regularized recon-
structions of 2D images could be performed on consumer laptops.

Previous algorithms for computing regularized solutions were unable to cope with
problems on the scale required for practical medical reconstruction. This may be
surprising, since the technique is widely used in many diverse fields. Conversely,
the new algorithms may be useful in applications reaching beyond medicine.

The regularized reconstruction algorithm was shown to produce images without
creating random artifacts, i.e. brain-looking features, other than those created by
the traditional method. This is important, since it allows the resolution to be
enhanced at the cost of suppressing elevated or lowered regions.

To reproduce the traditional algorithm, a post-filter was applied to an under-
regularized solution. The result is visually indistinguishable from the traditional
algorithm it imitates. Furthermore, the reconstruction algorithms allow the user
to balance the amount of filtering (either regularization or post-filtering) in real-
time, once the initial processing is complete. Therefore, the user can start with
the classical image, and choose a different setting by inspection.
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The new software made it possible to incorporate anatomical information by con-
straining certain regions to constant concentrations. The practical consequence
of this is that no assumptions were required in regions where the user would be
unsure of the result, e.g. near lesions.

Scientific contributions

There are several novelties in the project:

1. Rigorous bounds were established on linear inversion of Poisson-distributed
measurements.

2. Algorithms were developed to handle large-scale SVD computations and
computing regularized solutions for large-scale linear systems using arbi-
trary filter-factors.

3. Software was produced to make the algorithms accessible in a familiar
MATLAB

 environment.

4. Regularized reconstruction was demonstrated to be viable on consumer
hardware.

5. Finally, we showed that anatomical constraints could be incorporated in the
framework.

It should be noted that most of these results have applications outside tomographic
reconstruction. Indeed, regularization is fundamental for a large number of in-
verse ill-posed problems in e.g. geology and helioseismology. An extension to
the range of problems that could be handled by previously available software is
interesting for all such applications.
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Appendix

A Addendum to WLS
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This appendix contains technical proofs used in the analysis of weighted least-
squares in chapter 6.

A1 Image-space bound

(Point-distances on convex surfaces)LetO be the origin of a Cartesian coor-Lemma A1:
dinate system,B ∈ S1 the point on a convex surfaceS1 closest toO, andA ∈ S2

the point closest toO on another convex surfaceS2.

Assume neither surfaces containsO in their interior. Finally, letD be a point on
S1 andC the orthogonal projection ofD into the planeOAB as shown in fig. A.1.
Then we have the inequality|BD|2 + |AB|2 ≤ |OD|2 − |OA|2.

WLS−solutions in image−space

•

•

•

•

•

O 
 A

  B

 C

 D

Figure A.1:
Geometry of the
points in the dis-
tance lemma.

SinceA andB are part of the convex surfaceS2, whereA by definition is closestPROOF

to O, it follows that∠OAB ≥ 90◦. By the same reasoning onS1, we see that
∠OBC ≥ 90◦.

From this we have|OC|2 ≥ |OB|2 + |BC|2 and |OB|2 ≥ |OA|2 + |AB|2,
which combines into|AB|2 + |BC|2 ≤ |OC|2 − |OA|2. SinceCD is or-
thogonal to theOAB-plane we further have|BD|2 = |BC|2 + |CD|2 and
|OD|2 = |OC|2 + |CD|2. This finally gives the inequality|BD|2 + |AB|2 ≤
|OD|2 − |OA|2. �

Let `P and `WLS be as defined in sec. 6.3 p. 67. Furthemore, let the penalty-Theorem A2:
function be given byr(x̂) = ‖Lx̂‖22.

Let x̂ be the reconstructed image, given by def. 6.1 p. 68, using the Poisson-
likelihood. Further assume there there are regularization-constants,αa andαb,
resulting in WLS-solutions,xa andxb, which satisfies:

`P(Axa,b) ≤ `P(Ax̂,b) ≤ `P(Axb,b)

`WLS(0,b) < `WLS(Ax̂,b) ≤ `WLS(Axb,b)
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If the reconstruction algorithm is continuous in the regularization parameter,α,
then there exist WLS-solutions,x1 andx2, that satisfy:

r(x̂− x1) + r(x̂− x2) ≤ r(x2)− r(x1)

r(x1) ≤ r(x̂) ≤ r(x2)

Since the reconstructed image is a continuous function ofα, there exists a regu-PROOF

larization parameter,αa ≤ α2 ≤ αb resulting in a WLS-image,x2, on the the
Poisson-surface:̀P(Ax2,b) = `P(Ax̂,b). Sincex̂ by definition minimizes the
penalty-function, we have the relationr(x̂) ≤ r(x2).

Similarly, there is a WLS-solution,x1, on a WLS-surface containing the Poisson-
solution: `WLS(Ax2,b) = `WLS(Ax̂,b). As before we haver(x1) ≤ r(x̂) by
definition.

Now letr(x) = ‖x‖22, and apply lemma A1 withx2 as pointD, x̂ as pointB and
x1 as pointA. Then|OA|2 = r(x1), |OD|2 = r(x2), |AB|2 = r(x1 − x̂) and
|BD|2 = r(x2 − x̂) which is the desired result.

Since any convex surface remains convex after a linear transform, it follows that
convex surfaces in the sinogram-space will also be convex in image-space. In fact
this holds for any matrix, not merelyA. It follows that the bound holds for any
penalty-function on the formr(x) = ‖Lx‖22. �

A2 Noise-perturbation of WLS-surface

We may determine aq that satisfies̀WLS(λ+p,b) = `WLS(λ,b−q) by equating
terms in eq. (6.5) and get(λi +pi− bi)2/bi = (λi− bi + qi)2/(bi− qi). Defining
qi = pici and dropping the indices, it is straightforward to show that:

0 = c2pb + c
(
2b(λ− b) + (λ + p− b)2

)
− b
(
2λ− 2b + p

)
Herec = 0 becomes a solution in the limitb → 0. Also, insertingb′ = b/b = 1,
λ′ = λ/b andp′ = p/b do not change the roots ofc, so we need only consider
b = 1.

There are always real solutions forλ ≥ 0, which is guaranteed sinceλ is a
Poisson-estimate. We now seek the point that maximizes the root of least ab-
solute value. This occur forλ = 0 andp = 1 −

√
2, in which case the solutions

arec = ±(1 +
√

2).
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B Base iteration
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This appendix details the basic iterative procedure used for computing large-scale
SVD-problems (chapter 8) and solving linear systems (chapter 9).

B1 Stopping criteria

As it is often the case with numerical algorithms, one of the most difficult things
of an iterative algorithm is to determine when to stop.

In principle, the base iteration consist of a loop that updates the NPSVD using
alg. 7.3 p. 85. For the left residual factorization, given by eq. (7.13) with the
constraint̂fv = 0, this gives:

s̃vβ∗ = AHŝu − V̂f̂u(B1)

s̃uf̃u = Aŝv − ŝuβ(B2)

Since we intend to use reorthogonalization, as described in sec. 7.6, the singular
matrices must remain well conditioned. Therefore there are two ways to stop
the iteration: (1) memory is exhausted or (2) rounding errors cause the singular
matrices to loose orthogonality.

Detecting loss of orthogonality

If we let ÛHÛ = I + MU andV̂HV̂ = I + MV, then the orthogonality-level of
Û andV̂ is a number,T , such that‖MU‖max ≤ T and‖MV‖max ≤ T .

It follows from theorem C12 p. 151 that ifT ≤ .5/k, then singular matrices are
well-conditioned. This is less strict than the semi-orthogonality criteria discussed
in sec. 7.4 p. 85, which requiresT ≤ √

εM .

One way to bound the orthogonality levels is to maintain matrices with elemen-
twise bounds on the orthogonality, i.e.|MU| ≤ OU and|MV| ≤ OV. This is
easiest to accomplish if only the last element off̂u is non-zero.

For this reason, the iteration should start with one step of alg. 7.3 with full re-
orthogonalization. This has the additional benefit that the NPSVD is guaranteed
to be expanded by at least one triplet.

Orthogonality of left singular vectors
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Consider the level of orthogonality between the search-vectorŝu and previous left
singular vectors:

ÛHŝu =
1

f̂H
u f̂u

ÛHŝuf̂
H
u f̂u

=
1

f̂H
u f̂u

ÛH
(
AV̂ − ÛB̂−GU

)
f̂uFrom eq. (8.1a)

=
1

f̂H
u f̂u

(
(B̂V̂H + GH

V)V̂ − ÛHÛB̂− ÛHGU

)
f̂uFrom eq. (8.1b)

=
1

f̂H
u f̂u

(
B̂MV −MUB̂ + GH

VV̂ − ÛHGU

)
f̂u

Taking absolute values of the above gives:

|ÛHŝu| ≤
1

f̂H
u f̂u

(
|B̂|OV |̂fu|+ OU|B̂f̂u|+ |GH

VV̂f̂u|+ |ÛHGUf̂u|
)

(B3)

=
1

|f̂u|

(
|B̂|(OV)[k] + OU|B̂|[k] + |GH

VV̂[k]|+ |ÛH(GU)[k]|
)

Section 7.3.4 showed that elements in each of the last two terms are bounded by
a constant,τc. Although single elements could be larger, it is usually safe to use
τc = τ .

In the rare case where this fails, it is possible to retract the last one or two iteration
in the following reorthogonalization. The most common cause for this is that an
optimistic value ofτ is used in the iteration.

Orthogonality of right singular vectors

We need an analogous result for the right singular vectors. This is slightly com-
plicated by the fact that the right search-vector is computed during the update.

ŝvβ∗ = AHŝu − V̂f̂u + r

wherer represents rounding errors. Then we have:

V̂Hŝv =
1
β∗

(
V̂HAHŝu − V̂HV̂f̂u + V̂Hr

)
=

1
β∗

(
B̂HÛHŝu + f̂uŝ

H
u ŝu + GH

Uŝu − (I + MV)f̂u + V̂Hr
)

Inserting eq. (8.1a)

Using the fact that̂su is normalized:

=
1
β∗

(
B̂HÛHŝu + GH

Uŝu −MV f̂u + V̂Hr
)

Taking absolute values gives the bound:

|V̂Hŝv| ≤
1
|β|

(
|B̂H|(|ÛHŝu|) + OV |̂fu|+ |GH

Uŝu|+ |V̂Hr|
)

(B4)

Notes on orthogonality

A few comments are in place. First of all, the bounds degrades quickly if|f̂u| or
|β| becomes small compared to‖B̂‖. However, if|f̂u| or β is small, the NPSVD
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has started to converge. In rough termsB̂ will decouple if one of these entries is
small enough, and “almost” decouple if it is just small.

The phenomena is well-known and has a comprehensive theory [15]. It allows us
to use the loss of orthogonality to double as an efficient way to detect convergence.
There is no need to provide a separate criteria.

Finally, it is possible that the bound on the search-vector is smaller than the pre-
vious level of orthogonality if|f̂u| (or |β|) is large compared to‖B̂‖. In this case
the largest value must be used.

Algorithm
001010
100001
111100

Once the stopping criteria has been determined, it is relatively easy to implement
the base iteration as shown in alg. B1. The orthogonality-level ofÛ is not allowed
to degrade to the same level asV̂. This is becauseTv can not be computed until
β is known, which requires a matrix-vector product. Thus, if the algorithm stops
at this point the computation will be wasted.

The implementation used in BBTools does not even checkTv, since it can retrac-
tion the last iterations to guard against an optimistic value ofτ . In many cases the
bounds are pessimistic, and the retraction is not needed at all.

Algorithm B1: Base iteration
Basic implementation of the left residual factorization. The input is an orthog-
onalized NPSVD updated once with alg. 7.3 with full reorthogonalization. The
iteration updates the NPSVD until the singular matrices start to loose orthogonal-
ity or memory is full.

H function [Û, V̂, B̂, ŝu, fu , k ] = iter(A, Û, V̂, B̂, ŝu, fu , k , K , τ, fA, f H
A , varargin)

OU = ones(K , K ) ∗ εM ; Tu = εM ; Initial orthogonality levels

OV = ones(K , K ) ∗ εM ; Tv = εM ;

H while k < K Iterate until memory is full

B̂A =
∣∣∣B̂(1 : k , 1 : k)

∣∣∣ ; Take out absolute part

õu = OU(1 : k , k)∗B̂A(k , k)+B̂A∗OV(1 : k , k); Evaluate eq. (B3)

õu = (õu + τ)/ |fu | ;
OU(1 : k , k +1) = õu; OU(k +1, 1 : k) = õu

H; Update orthogonality matrix

OU(k + 1, k + 1) = εM ;

Tu = max (Tu , max (õu)) ; Update orthogonality level

H if Tu ∗ k > 0.05, break Stop if orthogonality-level is low
J

[̂sv, β] = unit(AHŝu − V̂(:, k) ∗ fu); Search-vector by eq. (B1)

õv = B̂A

H ∗ õu + OV(1 : k , k) ∗ |fu | ; Evaluate eq. (B4)

õv = (õv + τ)/ |β| ;
OV(1 : k , k +1) = õv; OV(k +1, 1 : k) = õv

H; Update orthogonality matrix

OV(k + 1, k + 1) = εM ;

Tv = max (Tv , max (õv)) ; Update orthogonality level

H if Tv ∗ k > .5, break Stop if orthogonality-level is low
J

k = k + 1; Û(:, k) = ŝu; V̂(:, k) = ŝv; Update singular matrices

B̂(k , 1 : k) = 0; B̂(1 : k , k) = 0; Update coupling matrix

B̂(k , k − 1) = (fu)∗ ; B̂(k , k) = β;

[̂su, fu ] = unit(A ∗ ŝv − ŝu ∗ β); Search-vector from eq. (B2)
J J
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This appendix contains useful results and definitions from matrix analysis that are
used in the matrix algorithms in part III. Although some results are proved here
we strive to give references where possible.

Many perturbation results found in the literature are given in terms of angles be-
tween subspaces. In real programs it is normally more convenient to use inner
products and norms. This is the emphasis of the forms given here.

C1 Perturbation theory

Numerical methods rarely give exact result, but perturbation theory gives bounds
that we can use to guide the algorithms. The most important perturbation result
about the SVD is given by Weyl’s theorem.

(Weyl) The matricesA,E ∈ Cm×n satisfy|σk(A + E)− σk(E)| ≤ ‖E‖2.Theorem C1:

See [69].�PROOF

A useful consequence of Weyl’s theorem is the following corollary:

LetA be the following block matrix:Corollary C2:

A =
[
A1,1 A1,2

A2,1 A2,2

]
Then‖A‖2 ≤ max

{
‖A1,1‖2, ‖A2,2‖2

}
+ max

{
‖A1,2‖2, ‖A2,1‖2

}
.

There are also relative versions of Weyl’s theorem. We will use the most common
bound, but others have been found recently [51].

(Ostrowski) AssumẽA = DH
1 AD2 andA ∈ Cm×n, whereD1 andD2 areTheorem C3:

square. Letσk andσ̃k thek’th singular value ofA andÃ.

Further, definecM = σ1(D1)σ1(D2), the product of the largest singular values,
andcm = σm(D1)σn(D2), the product of the smallest singular values. Then we
have:

cmσi ≤ σ̃i ≤ cMσi

See [51].�PROOF

C2 Unitarily invariant norms

A norm, |||·|||, is unitarily invariant if|||A||| =
∣∣∣∣∣∣UHAV

∣∣∣∣∣∣ for all unitary matricesU
andV. Many stable algorithms are based on orthogonal transformations, and this
puts unitarily invariant norms in a central position for measuring rounding errors.
This is true even though they are not usually absolute1.

1A norm is absolute if‖A‖ = ‖(|A|)‖. The matrix 2-norm is not absolute.
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Since the SVD reduces any matrix to diagonal form, it is convenient to define
σ(A) as a vector containing the singular values ofA. With this notation we
may write the two most important norms as‖A‖2 = ‖σ(A)‖∞ and‖A‖F =
‖σ(A)‖2. However, the following theorem theorem, due to John Von Neumann,
shows that the family is infinite.

(Von Neumann’s norm theorem) The function|||A||| = ‖σ(A)‖V is a unitarilyTheorem C4:
invariant matrix-norm if, and only if,‖x‖V is an absolute permutation invariant
vector-norm.

See [70].�PROOF

This shows that a result that holds for any unitarily invariant norm is quite strong.
One way to prove such results is to use the following theorem.

(Ky Fan’s dominance theorem) Let A andB have equal size. Then|||A||| ≤Theorem C5:
|||B||| for all unitarily invariant norms if, and only if,

∑k
i=1 σi(A) ≤

∑k
i=1 σi(B)

for k = 1, 2, · · · .

See [70].�PROOF

The dominance theorem is sometimes impractical to use directly, but a few theo-
rems take some of the labor away.

(Padded matrix dominance) LetA be any matrix. Then any unitarily invariantTheorem C6:
norm satisfies

∣∣∣∣∣∣[A, 0
]∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣[A, B

]∣∣∣∣∣∣.
We need only show the case whereB = b is a single column, since the generalPROOF

result then follows by adding a single column at a time. Now setX =
[
A, b

]
and form

XHX =
[
AHA AHb
bHA bHb

]
.

By the Cauchy interlace theorem [27], the eigenvalues ofAHA interlaces those
of XHX. Forb = 0 the eigenvalues ofXHX are the eigenvalues ofAHA and
a zero. Since the eigenvalues ofXHX are the squared singular values ofX, we
haveσi

( [
A, 0

] )
≤ σi

( [
A, b

] )
and the dominance property is satisfied.�

(Projection dominance) Let P be an idempotent projection, i.e.P = PP.Theorem C7:
Then|||PA||| ≤ |||A||| in any unitarily invariant norm.

The singular values of an idempotent matrix,P, are1 or 0. The theorem nowPROOF

follows from Ostrowski’s theorem C3 and C5.�

Normalized norms

We are interested in norms that bound the error of individual components so that
|||A||| ≥ maxi,j |Ai,j |. To make this inequality sharp, we assume the norm satisfies
|||A||| = |c| if A consist of a single non-zero entryc. This is equivalent to requiring
|||A||| = ‖A‖2 if rank(A) = 1.

Ky Fan’s dominance theorem implies that the 2-norm is minimal in the sense
that ‖X‖2 ≤ |||X|||, which follows from insertingA = diag(‖X‖2, 0, · · · ) and
B = X.
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The Ky Fan norm, defined as‖A‖KF = ‖σ(A)‖1, is the other extreme. If we set
A = X andB = diag(‖X‖KF, 0, · · · ) and apply the dominance theorem we get
|||X||| ≤ ‖X‖KF. If we combine these observations we get the following result.

(C1) ‖A‖2 ≤ |||A||| ≤ ‖A‖KF

C3 Norm inequalities

All norms can be bounded in terms of each other, and it is handy to have a list of
these bounds ready. In addition to the usual norms,‖·‖1, ‖·‖2, ‖·‖∞, and‖·‖F,
we also need the max-norm:

(C2) ‖A‖max = max
i,j
|A(i,j)|

The max-norm is not consistent, i.e. the inequality‖AB‖ ≤ ‖A‖ · ‖B‖ may not
be satisfied. However, the max-norm gives a component-wise error which makes
it a natural choice in some situations. This thesis uses it mainly to measure the
orthogonality level or near-orthogonal matrices.

Table C.1 give constants for the norms of used in this thesis for a matrixA ∈
Cm×n. For convenience we also defined = min{m,n}. The upper bound is
found starting on the left, while the lower bound is found from the top. For in-
stance we find‖A‖1/

√
m ≤ ‖A‖2 ≤

√
n‖A‖1 in two lookups.

‖A‖max ‖A‖1 ‖A‖∞ ‖A‖2 ‖A‖F ‖A‖KF

‖A‖max 1 1 1 1 1
‖A‖1 m m

√
m

√
m

√
m

‖A‖∞ n n
√

n
√

n
√

n

‖A‖2
√

mn
√

n
√

m 1 1
‖A‖F

√
mn

√
n

√
m

√
d 1

‖A‖KF

√
mnd

√
nd

√
md d

√
d

Table C.1:
Constants that
bounds the norm
on the left in terms
of the norm on the
top. The matrix
A is m × n, and
d = min{m, n}.

The constants in the table are attained for some matrices. For instance the matrix
A(i,j) = e2πij/ max{m,n} satisfies‖A‖KF =

√
mnd‖A‖max. It is not always

possible to attain equality ifA is restricted to be real (e.g.3×3). It is still asymp-
totically sharp, and it can sometimes be reached. If, for example,H =

[
A, B

]
is a Hadamard matrix then equality is attained byA.

Finally we also need the following bounds [27, 69]:

‖A‖2 ≤ ‖(|A|)‖2(C3)

‖A‖2 ≤
√
‖A‖1‖A‖∞(C4)

|xHy| ≤ ‖x‖2‖y‖2(C5)

We refer to eq. (C5) as the Cauchy inequality, although some texts refer to it as
the Cauchy-Schwartz inequality.

C4 Matrix approximations

Any good textbook on linear algebra discusses the least-squares problem where
we find an approximate solution toAx ≈ b by minimizing ‖Ax − b‖2. It
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turns out that the notion of “least-squares” generalizes naturally from vectors to
matrices. This result is established in the following theorem.

(Least-squares approximation) Let A ∈ Cm×n andB ∈ Cm×p be arbitraryTheorem C8:
matrices. ThenX = A+B minimizes|||AX−B|||, and is the unique choice that
minimizes|||X|||, where|||·||| is any unitarily invariant norm.

Let A = UΣVH be a full SVD of A, and defineX = A+B + D wherePROOF

D ∈ Cn×p. Fork = rank(A) we have:

|||AX−B||| = |||AA+B−B + AD|||
= |||(AA+ − I)B + AD|||
=
∣∣∣∣∣∣((UΣVH)(VΣ+UH)− I

)
B + UΣVHD

∣∣∣∣∣∣
=
∣∣∣∣∣∣(UΣΣ+UH −UUH)B + UΣVHD

∣∣∣∣∣∣
=
∣∣∣∣∣∣(ΣΣ+ − I)UHB + ΣVHD

∣∣∣∣∣∣(unitary invariance)

=
∣∣∣∣∣∣∣∣∣∣∣∣[0 −I

]
UHB +

[
Σk

0

]
VHD

∣∣∣∣∣∣∣∣∣∣∣∣
whereΣk = diag(σ1, · · · , σk).

Since the rows of the two terms do not overlap, it follows from the padded domi-
nance theorem C6, that the firstk rows ofVHD must be zero. We also have:

|||X||| =
∣∣∣∣∣∣VΣ+UHB + D

∣∣∣∣∣∣ = ∣∣∣∣∣∣Σ+UHB + VHD
∣∣∣∣∣∣

Only the firstk rows of the first term can be non-zero, and we have just seen that
these must be zero in the second term forX to minimize|||AX−B|||. As before
the rows do not overlap, so the remaining rows ofVHD must be zero to minimize
|||X|||. �

The following result is well-known, but is not usually stated in full generality.

(Schmidt-Mirsky low-rank approximation) Let the SVD ofA ∈ Cm×n beTheorem C9:
given byA = UΣVH and let|||·||| be any unitarily invariant norm. Then the ma-
trix B =

∑k
i=1 Σ(i,i)U(:,i)V

H
(:,i) minimizes|||A−B||| among all matrices with

rank(B) = k ≤ rank(A).

A number of texts include a proof for special cases. A particularly readable geo-PROOF

metric argument that covers the 2-norm is given in [73]. A proof for the general
case can be found in [70].�

C5 Near-orthogonal matrices

It is useful to collect a few facts about matrices on the formQ̂HQ̂ ≈ I. To this
end we consider the matrixQHQ = I + MQ. The orthogonality levelof the
columns inQ is then defined as the scalarT = ‖MQ‖max. A key property of
near-orthogonal matrices is that their singular values are near1.

(Singular values of a near-orthogonal matrix) Let the columns ofQ ∈ Cm×nTheorem C10:
be orthogonal at levelT , i.e.QHQ = I+E where‖E‖max ≤ T . If nT ≤ 1, then√

1− nT ≤ σi(Q) ≤
√

1 + nT for all i.

From table C.1 we have‖E‖2 ≤ n‖E‖max ≤ nT . Weyl’s theorem then gives thePROOF

bound1− nT ≤ σi(I + E) = σi(QHQ) ≤ 1 + nT . But σi(Q) =
√

σi(QHQ),
which establishes the theorem.�
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A near-orthogonal matrix is always well-conditioned. We start with a lemma.

If |x| ≤ κ < 1 are real scalars, then(1+x)2 ≤ (1+x)/(1−x) ≤ (1+x)2/(1−Lemma C11:
κ2).

Multiplying through with1 + x we get:PROOF

1 + x

1− x
=

(1 + x)2

1− x2

The lemma follows since|x| ≤ κ < 1 implies that1− κ2 ≤ 1− x2 ≤ 1. �

(Condition of near-orthogonal matrix) Let the columns ofQ ∈ Cm×n beTheorem C12:
orthogonal at levelT , i.e.QHQ = I + E where‖E‖max ≤ T . If nT ≤ κ < 1,
thencond(Q) ≤ (1 + κ)/

√
1− κ2.

Since the condition ofQ is given bycond(Q) = maxi σi(Q)/ mini σi(Q), the-PROOF

orem C10 states thatcond(Q) ≤
√

(1 + nT )/(1− nT ). The theorem follows
from insertingx = nT in lemma C11.�

For instance, ifκ ≤ 1/2, thencond(Q) ≤
√

3.

C6 Triplet orthogonality

One of the big hurdles in creating numerical software for the SVD (and many
other problems), is the need to keep the triplets orthogonal. In order get mean-
ingful results, many iterative methods must sacrifice efficiency. The time spent
during orthogonalization may dominate the whole computation

Explicit reorthogonalization becomes intolerable for problems that are too large
to contain a solution in memory. In this case reorthogonalization requires disk
access which severely hampers the efficiency of the algorithm.

To circumvent this we will rely onimplicit orthogonality. The theorems derived
in this section tells us that numerical triplets will automatically be (numerically)
orthogonal under certain conditions.

We consider numerical singular triplets(ûi, v̂i, σ̂i) of the form:

Av̂i = σ̂iûi + ŭi AHûi = σ̂∗i v̂i + v̆i(C6)

It is assumed that all triplets have been normalized, i.e.1 − εo ≤ ‖ûi‖, ‖v̂i‖ ≤
1 + εo whereεo is on the order of machine-precision.

The results are derived by expressing the inner products in terms of the errors.

A pair of triplets, as given by eq.(C6), where|σ̂i| 6= |σ̂j | satisfies the relations:Lemma C13:

v̂H
j v̂i =

σ̂i(ŭH
j ûi − v̂H

j v̆i) + σ̂∗j (v̆H
j v̂i − ûH

j ŭi)
|σ̂i|2 − |σ̂j |2

ûH
j ûi =

σ̂∗i (v̆H
j v̂i − ûH

j ŭi) + σ̂j(ŭH
j ûi − v̂H

j v̆i)
|σ̂i|2 − |σ̂j |2
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Consider the entitŷvH
j AHAv̂i:PROOF

v̂H
j AHAv̂i = v̂H

j AH(σ̂iûi + ŭi)

= σ̂iv̂H
j (AHûi) + (v̂H

j AH)ŭi

= σ̂iv̂H
j (σ̂∗i v̂i + v̆i) + (σ̂jûj + ŭj)

Hŭi

= |σ̂i|2(v̂H
j v̂i) + σ̂i(v̂H

j v̆i) + σ̂∗j (ûH
j ŭi) + (ŭH

j ŭi)

Exchanginĝvi with v̂j and taking the Hermitian gives another expression:

v̂H
j AHAv̂i = |σ̂j |2(v̂H

j v̂i) + σ̂∗j (v̆H
j v̂i) + σ̂i(ŭH

j ûi) + (ŭH
j ŭi)

Isolating v̂H
j v̂i from these equations gives the first equation in the lemma. An

analogous argument on̂uH
j AAHûi gives the other equation.�

The following theorem asserts that accurate triplets are orthogonal, as long as their
singular values differ slightly.

(Mutual triplet orthogonality) Assume a set of normalized numerical tripletsTheorem C14:
(ûi, v̂i, σ̂i) satisfies‖Av̂i − σ̂iûi‖ ≤ ti and ‖AHûi − σ̂∗i v̂i‖ ≤ ti. Then the
orthogonality of a pair of triplets, where|σ̂i| 6= |σ̂j |, is bounded by:

max{|v̂H
i v̂j |, |ûH

i ûj |} ≤
ti + tj∣∣|σ̂i| − |σ̂j |

∣∣ (1 + εo)

First note that
∣∣|σ̂i|2 − |σ̂j |2

∣∣ =
∣∣|σ̂i| − |σ̂j |

∣∣ · (|σ̂i| + |σ̂j |
)
. This, the CauchyPROOF

inequality, and lemma C13 leads to:

|v̂H
j v̂i| ≤

|σ̂i| · (‖ŭj‖+ ‖v̆i‖) + |σ̂j | · (‖v̆j‖+ ‖ŭi‖)∣∣|σ̂i| − |σ̂j |
∣∣ · (|σ̂i|+ |σ̂j |

) (1 + εo)

|ûH
j ûi| ≤

|σ̂i| · (‖v̆j‖+ ‖ŭi‖) + |σ̂j | · (‖ŭj‖+ ‖v̆i‖)∣∣|σ̂i| − |σ̂j |
∣∣ · (|σ̂i|+ |σ̂j |

) (1 + εo)

Substitutingti andtj into these equations completes the proof.�

If there is just a small relative difference in the singular values, then the orthogo-
nality is determined by the accuracy relative to the largest singular value. To make
this clear, assume that|σ̂i| > |σ̂j | and rewrite the relation as follows:

max{|v̂H
i v̂j |, |ûH

i ûj |} ≤
ti + tj
|σ̂i|

( 1 + εo

1− |σ̂j |/|σ̂i|

)
For instance, if|σ̂i| ≥ 1.01|σ̂j |, then the last term is at most100(1 + εo).

The following result treats the case where|σ̂i| ≈ |σ̂j |. It shows that keeping one
set of singular triplets orthogonal is good enough for the large singular values.

(One-sided triplet orthogonality) Assume the normalized numerical tripletsTheorem C15:
(ûi, v̂i, σ̂i) satisfies‖Av̂i− σ̂iûi‖ ≤ ti and‖AHûi− σ̂∗i v̂i‖ ≤ ti. Then we have
the bounds:

|v̂H
j v̂i| ≤ |ûH

j ûi|+
ti + tj

min{|σ̂i|, |σ̂j |}
(1 + εo)

|ûH
j ûi| ≤ |v̂H

j v̂i|+
ti + tj

min{|σ̂i|, |σ̂j |}
(1 + εo)
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We first assume|σ̂i| < |σ̂j |, which only leaves equality since the triplets can bePROOF

exchanged. We then rewrite lemma C13 in the form:

v̂H
j v̂i = σ̂ic1 + σ̂∗j c2(C8)

ûH
j ûi = σ̂∗i c2 + σ̂jc1(C9)

Here we have defined the valuesc1 = (ŭH
j ûi − v̂H

j v̆i)/(|σ̂i|2 − |σ̂j |2) and
c2 = (v̆H

j v̂i − ûH
j ŭi)/(|σ̂i|2 − |σ̂j |2).

Isolatingc1 from eq. (C8) and inserting into eq. (C9) gives:

ûH
j ûi = σ̂∗i c2 +

σ̂j

σ̂i

(
v̂H

j v̂i − σ̂∗j c2

)
=

c2

σ̂i

(
|σ̂i|2 − |σ̂j |2

)
+

σ̂i

σ̂j
(v̂H

j v̂i)

=
v̆H

j v̂i − ûH
j ŭi

σ̂i
+

σ̂i

σ̂j
(v̂H

j v̂i)

Similarly, isolatingc2 from eq. (C9) and inserting in eq. (C8) gives:

v̂H
j v̂i =

ŭH
j ûi − v̂H

j v̆i

σ̂∗i
+

σ̂∗i
σ̂∗j

(ûH
j ûi)

Inserting the bounds required by the theorem completes the case where|σ̂i| 6=
|σ̂j |. In the case of equality we simply multiplyσi by a factor,c, which will
increaseti andtj by an arbitrarily small amount. In the limitc → 1 we obtain the
same relation.�

C7 Accuracy of singular values

To control the accuracy of the computations we need to bound the accuracy of
the singular values in terms of quantities that can either be computed or bounded.
In practice this means that it should be expressed in terms of the norms of the
residuals matrices,‖EU‖ and‖EV‖, and the orthogonality levels,‖MU‖ and
‖MV‖.

To this end we start with the following lemma.

Let Û ∈ Cm×k, V̂ ∈ Cn×k, k ≤ min{m,n}, whereÛHÛ = I + MU andLemma C16:
V̂HV̂ = I+MV. Also, letΣ̂ be a diagonal matrix with positive real entries that
satisfies:

AV̂ = ÛΣ̂ + EU AHÛ = V̂Σ̂H + EV

Then there exists matricešU =
[
Û, Û◦] ∈ Cm×m and V̌ =

[
V̂, V̂◦] ∈

Cn×n where(Û◦)HÛ◦ = I and(V̂◦)HV̂◦ = I and satisfies:

ÛHÛ◦ = 0 V̂HV̂◦ = 0 (Û◦)HAV̂◦ = Σ̂◦(C10)

Furthermore, the productC = ǓHAV̌ is given by:

C =
[

ÛHAV̂ EH
VV̂◦

(Û◦)HEU Σ̂◦

]
(C11)

=
[
I + MU

I

] [
Σ̂

Σ̂◦

]
+ GU, GU =

[
ÛHEU EH

VV̂◦

(Û◦)HEU 0

]
(C12)

=
[
Σ̂

Σ̂◦

] [
I + MV

I

]
+ GV, GV =

[
EH

VV̂ EH
VV̂◦

(Û◦)HEU 0

]
(C13)
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First choose matriceŝUH
1 Û1 = I andV̂H

1 V̂1 = I soÛHÛ1 = 0 andV̂HV̂1 =PROOF

0. This can be done e.g. using a QR-decomposition. IfÛ2Σ̂
◦V̂H

2 = X is an SVD
of X = ÛH

1 AV̂1, thenÛ◦ = Û1Û2 andV̂◦ = V̂1V̂2 satisfies eq. (C10).

Equation (C11) can be verified by direct multiplication. InsertingAV̂ = ÛΣ̂ +
EU leads to eq. (C12). Similarly we get eq. (C13) by inserting theAHÛ =
V̂Σ̂H + EV. �

(NPSVD accuracy) Let the conditions be as in lemma C16, and assume thatTheorem C17:
no element ofMU or MV exceedsT in magnitude, wherekT = κ < 1. Then
there exists a permutation,P (i), that maps thek numerical triplets,̂σi, to exact
triplets,σP (i), of A that satisfies:

|σ̂i − σP (i)| ≤ σ̂i
2κ

1− κ
+
(
‖EU‖2 + ‖EV‖2

)1 + κ

1− κ

Let σ̌i be the singular values ofC = ǓHAV̌. Using Ostrowski’s theorem onPROOF

eq. (C11) givešσi = ξ1σi, where1− κ ≤ |ξ1| ≤ 1 + κ by theorem C10.

Applying Ostrowski’s theorem on the first term in eq. (C12) followed by Weyl’s
theorem givešσi = ξ2σ̂P−1(i) + ξ3, whereP (i) is a permutation,1 − κ ≤ ξ2 ≤
1 + κ, and|ξ3| ≤ ‖GU‖2.

Eliminatingσ̌i from these expressions leads to:

σ̂P−1(i) − σi = (1− ξ2/ξ1)σ̂P−1(i) − ξ3/ξ1

or, if we invert the perturbation,

σ̂i − σP (i) = (1− ξ2/ξ1)σ̂i − ξ3/ξ1(C14)

Inserting the extreme values forξ1 andξ2 shows that(1− κ)/(1 + κ) ≤ ξ2/ξ1 ≤
(1 + κ)/(1− κ), which leads to|1− ξ2/ξ1| ≤ 2κ/(1− κ).

To bound|ξ3/ξ1| we use corollary C2 onGU:

|ξ3/ξ1| ≤ max{‖EU‖2, ‖EV‖2}
1

1− κ
+

1 + κ

1− κ
‖EU‖2

An analogous treatment of eq. (C13) gives:

|ξ3/ξ1| ≤ max{‖EU‖2, ‖EV‖2}
1

1− κ
+

1 + κ

1− κ
‖EV‖2

Choosing the lowest of these bounds:

|ξ3/ξ1| ≤ max{‖EU‖2, ‖EV‖2}
1

1− κ
+ min{‖EU‖2, ‖EV‖2}

1 + κ

1− κ

≤
(
‖EU‖2 + ‖EV‖2

)1 + κ

1− κ

Inserting all these bound in eq. (C14) completes the proof.�

Although theorem C17 may seem unwieldy, it bounds the difference between the
exact singular values and those of an NPSVD in terms of quantities that are rela-
tively easy to work with in a program.
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C8 Triplet accuracy and aliasing

The singular triplets are meant to represent the matrixA, so we want to interpret
the singular triplets as approximations to exact triplets. This leads to the following
requirements, illustrated in fig. C.1:

1. Each numerical triplet should map to an exact triplet ofA.

2. The difference between the singular value of a numerical triplet and the
exact one it maps to should be bounded by a small multiple of‖A‖2εM .

3. The exact triplets in the map should be exactly orthogonal, i.e. the exact
triplets should be unique.

Coupling between exact and numerical triplets

×××××××××××××××××××××

Exact singular values

•
•

•
•

•
•

•••
•

•
•

••
Numerical triplets and error bars

Figure C.1:
All numerical
triplets should map
to a unique exact
triplet.

Theorem C17 is the main vehicle we will use to prove that these requirements
are met. However, by itself it leads to unnecessarily large bounds on the singular
values. If we apply it to a single triplet instead, we get the following result.

(Single triplet accuracy) Let (ûi, v̂i, σ̂i) be a numerical triplet where‖Av̂i −Corollary C18:
σ̂ûi‖ ≤ tu and‖AHûi − σ̂v̂i‖ ≤ tv. Further assume that̂ui andv̂i are normal-
ized, so that1 − εo ≤ ‖ûi‖2, ‖v̂i‖2 ≤ 1 + εo. If εo ≤ 0.05 then there exist an
exact singular triplet ofA, (uj ,vj , σj), so that

|σj − σ̂i| ≤ 1.11(tu + tv) + 2.11|σ̂i|εo

This asserts that the computed singular values are accurate as long as the nu-
merical triplets maps to unique exact triplets. However, if we are given a set of
numerical triplets and the intervals allowed by the corollary does not overlap, then
the exact tripletsmustbe unique.

If two singular triplets have overlapping ranges, they may both have a large com-
ponent corresponding to the same exact triplet we wish to extract. We say that
such tripletsalias each other. In this case we must go back to theorem C17 and
include all triplets that may potentially alias the same singular value.

C9 One-sided reorthogonalization

One interesting observation is that theorem C15 and C17 are, in some sense, re-
ciprocal. The first states that if either the right or left numerical vectors are kept
orthogonal at levelεM , then the other vectors are roughly orthogonal at level
T ≈ εM/σ̂. On the other hand, theorem C17 says that to compute the singular
values accurately (relative to the largest singular value), the level of orthogonality
need only satisfy2kT σ̂ ≈ εM .

This leads us to think that keeping one set of triplets orthogonal suffices to com-
pute singular values to full accuracy. The following theorem is a precise statement
of this argument.
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(One-sided orthogonality accuracy) Assume a set of sorted numerical triplets,Theorem C19:
(ûi, v̂i, σi), σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂k, satisfies‖Av̂i − σ̂iûi‖ ≤ tu and‖AHûi −
σ̂iv̂i‖ ≤ tv. Furthermore, assume that all pairs satisfies either|ûH

j ûi| ≤ T or
|v̂H

j v̂i| ≤ T . Finally assume thatκk = kT + k(tu + tv)/σ̂k < 1.

Then the numerical triplets correspond to unique exact triplets ofA, σ̂i ≈ σPk(i),
with the difference bounded by:

|σ̂i − σPk(i)| ≤ σ̂i
2kT

1− κk
+ 2k

( σ̂i

σ̂k

)
(tu + tv) +

(
‖EU‖2 + ‖EV‖2

)1 + κk

1− κk

In the case where|MU| ≤ T we have, from theorem C15, that|MV| ≤ T +PROOF

(tu + tv)/ min{σ̂i, σ̂j}. Otherwise we have|MV| ≤ T , and we similarly get
|MU| ≤ T + (tu + tv)/ min{σ̂i, σ̂j}. In either case theorem C17 applies with
κ = κk, which is the stated result.�

The analysis would be complete had it not been for the termσ̂i/σ̂k. We can elim-
inate this by settingk = i, but there is no guarantee thatPk(i) is the same for all
k ≥ i.

The problem is illustrated in fig. C.2. At some point we have a number of triplets
determined accurately, but when we introduce a new triplet it may not be possible
to map the previous triplets without increasing their error-bars substantially. In
the example the escalation occurs even though the triplets are added in order of
strictly decreasing singular values. Also, the new triplet can be arbitrarily close to
an exact singular value.

Escalating errors for aliasing triplets

×××××××××
Exact singular values

↑ Not found
in the first
set•••

•••
Numerical
triplets

•••
•••

•
New triplet↑

Figure C.2:
Adding a numer-
ical triplet may
cause the errors of
previously triplets
to increase.

The cure is to give up the pure one-sided approach and orthogonalize each triplet
against all potentially aliasing triplets. This enforces the condition thatκi ≈ κk

(by loweringκk) if the error in thek’th triplet could escalate to tripleti. With this
modification the factor̂σi/σ̂k vanishes.

The key observation is that we only need to keep both left and right singular
vectors for a few triplets at a time. This means that the singular values can be
computed to full machine precision with memory that scales in the smallest di-
mension ofA.
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This appendix contains a list of the functions provided with BBTools v0.2.4b,
released 16-Sep-2005. Please note that function provided for compatibility is not
addressed here. See chapter 10 for compatibility with MATLAB

.

List of categories and tables

Getting started with BBTools . . . . . . . . . . . . . . . . . . . . . . . D.1

Elementary black-box operators . . . . . . . . . . . . . . . . . . . . . D.2

Toeplitz and related operators . . . . . . . . . . . . . . . . . . . . . . .D.3

Image- and hypercube operators . . . . . . . . . . . . . . . . . . . . .D.4

Tomographic operators . . . . . . . . . . . . . . . . . . . . . . . . . . D.5

Miscellaneous operators . . . . . . . . . . . . . . . . . . . . . . . . . . D.6

Black-box creation, manipulation, and destruction . . . . . . . . . . . .D.7

Black-box information and verification . . . . . . . . . . . . . . . . . . D.8

Tests and probes for iterative algorithms . . . . . . . . . . . . . . . . .D.9

Explicit black-box versions of standard functions . . . . . . . . . . . .D.10

Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D.11

Miscellaneous support functions . . . . . . . . . . . . . . . . . . . . .D.12

Computing with black-box operators . . . . . . . . . . . . . . . . . . .D.13

Equation solving and regularization . . . . . . . . . . . . . . . . . . .D.14

SVD computations . . . . . . . . . . . . . . . . . . . . . . . . . . . .D.15



i
i

i
i

i
i

i
i

158 BBTools reference

Function Description
bbdoc Start online documentation for the toolbox
bbinstall (GUI) Install, uninstall, download, and upgrade

Table D.1:
Getting started
with BBTools.

Function Description
bbmatrix Create black-box from a Matlab matrixx
bbinv Create black-box to invert a Matlab matrix
bbindex Create indexing black-box
bbeye Create identity black-box
bbdiag Create diagonal black-box
bbconst Create black-box with constant elements
bbzeros Create black-box of zeros
bbmean Create averaging black-box

Table D.2:
Elementary black-
box operators.

Function Description
bbtoeplitz Create Toeplitz black-box
bbdbltoeplitz Create doubly Toeplitz black-box
bbblktoep1s Create sparse block-Toeplitz type-1 black-box
bbhankel Create Hankel black-box

Table D.3:
Toeplitz and related
operators.

Function Description
bbflipdim Create black-box that flips a specified dimension
bbpermute Create dimension-permuting black-box
bbredim Create redimensioning black-box
bbrescale Create rescaling black-box
bbconvn Create black-box forN -dimensional convolution

Table D.4:
Image- and hyper-
cube operators.

Function Description
bbtomoemit Create black-box model of an emission tomograph
bbradon Create black-box for a Radon transform
bbfbp Create inverse of Radon using filtered backprojection

Table D.5:
Tomographic oper-
ators.

Function Description
bbhadamard Create Hadamard black-box
bblaplacian Create a finite-difference Laplace operator

Table D.6:
Miscellaneous op-
erators.

Function Description
blackbox Create black-box operator
bbclear Remove a black-box without leaving garbage
bbqualify Add informational qualifier to a black-box
bbsimplify Simplify a black-box operator
bbinline Inline and freeze a black-box operator
get Get black-box parameter
set Set black-box parameter
isa Check type of matrix operator

Table D.7:
Black-box cre-
ation, manipula-
tion, and destruc-
tion.
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Function Description
bbinspect (GUI) Utility to explore an evaluation tree
bbshowtree Show evaluation tree for a black-box
bbtauest Estimate accuracy of a black-box statistically
bbcompare Compare two operators for equality

Table D.8:
Black-box infor-
mation and verifi-
cation.

Function Description
bbnoisy Create a noisy version of an operator
bbcount Create black-box that counts invocations
bbcountstat Get count statistics
bbcountreset Reset counts statistics

Table D.9:
Tests and probes
for iterative algo-
rithms.

Function Description
bbadd Add a number of operators
bbprod Form a product of operators and scalars
bbkron Form Kronecker-product of two operators
bbrepmat Replicate and tile an operator

Table D.10:
Explicit black-box
versions of stan-
dard functions.

Function Description
bbrand Draw random samples from a given distribution
bbpca Principal Component Analysis
bbempoisson Solve linear system with Poisson noiseTable D.11:

Statistics.

Function Description
bbkernel Make a standard convolutional kernel
bbphantom Make a standard test-image
bbimagein Display intensity-image with gamma-correction

Table D.12:
Miscellaneous sup-
port functions.

Function Description
bbmult Multiply black-box with a matrix
bbmultq Quick evaluation of product (no checks)
bbmultqh Quick evaluation of adjoint product (no checks)
bbfunc Get functions for matrix-vector products
bbfuncm Get functions for matrix-matrix products

Table D.13:
Computing with
black-box opera-
tors.

Function Description
bbpresolve Prepare iterative solution of a linear system
bbsolve Compute a solution of a linear system
bbregsolve Compute a regularized solution of a linear system
bbsolveopt Create options for solving a linear system
bbsolvemem Estimate memory usage for solving a linear system
bblcurve Compute L-curve and estimate regularization parame-

ter

Table D.14:
Equation solving
and regularization.

Function Description
bbsvds Compute singular values/triplets of an operator
bbsvdf Compute singular triplets of an operator with call-back
bbsvdopt Create options for computing an SVD
bbsvdmem Estimate memory usage for an SVD computation

Table D.15:
SVD computa-
tions.
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step-and-shoot, 23

acquisitions mode, 19
active contour model, 56
adaptive snake, 56
algorithm

arnoldi, 88
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LSQR, 93, 112
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machine precision, 7
matrix

least-squares approximation, 150
low-rank approximation, 150
see also Schmidt-Mirsky.
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small, 6
sparse, 98

matrix structure, 87
MCI, iv (see mild cognitive impair.)
mean-field approximation, 56
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MOORE Tools, 123
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multinomial distribution, 31
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non-collinearity, 17
non-negative, 36
norm

absolute, 147
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Ky Fan, 148
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padded matrix dominance, 148
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see also SVD, Krylov, Arnoldi,
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coupling matrix, 80
diagonalization, 82
orthogonalize, 90
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singular error matrix, 80
singular values, 153
terminology, 80
update, 82

null-space, 44
numerical

notation, 7
partial SVD (NPSVD), 80
singular triplet, 79

on-line subtraction, 18, 32
one-sided

deflation, 103
reorthogonalization, 155
see also orthogonalization.
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orthogonal, 5

matrix, 150
orthogonal projector, 62
orthogonality

implicit, 151
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orthogonalization
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partial SVD, 4, 79
see also SVD.

penalty function, 60
perturbation theory, 147
PET, 16(see scanner)

model, 27
phantom, 21
photo multiplier tube, 18
Picard condition, 111
pixel, 30
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PMT, 18(see photo multiplier tube)
point-spread function, 10, 129
Poisson

distribution, 30
Simeon Denis, 30
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see also orthogonalization.
residual, 107
residual factorization, 97
resolution, 10, 57
restart

exact shift strategy, 91
explicit, 109
implicit, 91, 98, 109
Lanczos, 90
NPSVD, 92

ridge regression, 60
Riemann-Lebesgue, 55
ringing, 42
Ronald B. Morgan, 97
rounding residual, 97, 100, 108

sagittal plane, 5
sampling theorem, 55
Savværksejer Jeppe Juhl og hustru Ovita

Juhls Mindelegat, v
scan

transmission, 12
scanner

abbreviations, 9
acquisitions mode, 19
CT, 12–14
gallery, 10
PET, 16–19

resolution, 10
septa, 19
SPECT, 14–16

multi-head, 14
tracer, 14

Schmidt-Mirsky’s theorem, 150
Schwartz, 149(see Cauchy inequality)
scintillation crystal, 16
search vectors, 83
selective reorthogonalization, 85
semi-orthogonal vectors, 86
semi-orthogonality, 90
septa, 19
shifted Poisson distribution, 32
sieve, 46
SimSET, 32
simulated annealing, 56
singular triplet, 79, 151

accuracy, 155
exact, 79
implicit orthogonality, 151
numerical, 79
orthogonal, 79
orthogonality, 151, 152

singular value decomposition (SVD), 79
singular values

near-orthogonal matrix, 150
SIR, 55
SIRA, 55
slant-stacking, 32
small, 6
solver, iterative, 107
sparse matrix, 98
spatial invariant, 52
SPECT, 14(see scanner)

model, 24
star artifact, 39, 41(see artifact)
step-and-shoot, 23(see acquisition)
Stieltjes integrals, 40
stopping criteria, 143
streak artifact, 39, 41(see artifact)
surrogate function, 55
SVD, 4, 79–105

NPSVD, 80
partial (PSVD), 79
perturbation, 147
singular triplet, 79
thin, 59

system matrix, 30, 32

theorem
Central Slice, 38
cond. of near-ortho. matrix, 151
EM convergence, 44
Fourier Slice, 38
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Ky Fan dominance, 148
matrix approximation, 150
NPSVD accuracy, 154
Ostrowski, 147
padded matrix dominance, 148
projection dominance, 148
sampling, 55
Schmidt-Mirsky, 150
triplet accuracy, 155
triplet orthogonality, 152
Von Neumann, 148
Weyl, 147

thin SVD, 59
Tikhonov regularization, 59
Toft, Peter Aundal, 32
tomography, 3
tracer

dose, 30
SPECT, 14

transaxial plane, 5
transform

Fourier, 39
Radon, 22

transmission scan, 12
transverse plane, 5
tridiag, 87(see algorithm)
tridiagonalization, 86(see Lanczos)
triplet, 79(see singular triplet)
triplet aliasing, 101, 155
two-sided deflation, 102

unitarily invariant norm, 147
normalized, 148

variability, 51
Von Neumann

unit. invariant norm theorem, 148

weighted least-squares, 60, 67
Weyl’s theorem, 147
WLS, 67(see weighted least-squares)
Woodbury’s formula, 108
Worsley, Keith John, 54

Yavuz, Mehmet, 33
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General notation

x∗ Complex conjugate ofx.

, Definition, e.g.x , 2 means thatx = 2 by definition.

εM Machine epsilon, the smallest number such that1 + εM rounds to1.

Matrix notation

All vectors are column vectors. Row vectors are described as transposed (conju-
gated) column vectors. Matrices are written in uppercase boldface letters, likeA,
while vectors are written in lowercase, likex.

Submatrices are indicated using MATLAB
notation. Thus the matrixA(:,1:3) con-

sists of the first three columns ofA.

AT Transpose.

AH “Hermitian”, i.e. transpose-conjugated. ThusAH = (AT)∗.

A+ The pseudo-inverse, or Moore-Penrose inverse, of the matrixA.

‖A‖ Unspecified norm ofA (see p. 149 for other norms).

I Identity matrix. When used in an expression, it automatically have the necessary
dimensions.

0 The zero-vector or -matrix of appropiate dimension.

range(A) The space spanned by the columns ofA: range(A) = {y : y = Ax}, wherex
is taken over all possible vectors.

null(A) Null-space ofA: null(A) = {x : Ax = 0}.

diag(x) Diagonal, i.e.A = diag(x) impliesA(i,i) = x(i) andA(i,j) = 0 for i 6= 0.

Sets

R Real numbers.

C Complex numbers.

Q Rational numbers.

N Natural numbers (non-negative integers).

Z Integers.
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Signal processing

F The Fourier-transform. IfF (ω) andf(x) are Fourier-pairs, then we have:

F (ω) = F{f(x)} =
∫ ∞

−∞
f(x)e−jωxdx

f(x) = F−1{F (ω)} =
∫ ∞

−∞
F (ω)e+jωxdω/(2π)

Statistics

E {} Expectation. E.g.E {x} is the mean value of the stochastic variablex.

var Variance.var{x} = E
{
(x− E {x})2

}
.

Miscellaneous

O Asymptotic upper bound. The functiong(x) is in the setO(f(x)) if there are
positive constantsc andx0 such that0 ≤ f(x) ≤ cg(x) for all x > x0.

If an algorithm runs inO(n2) time, it means that the time taken for the algorithm
is less thancn2 for some constantc, whenn is sufficiently large.
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