Tracer kinetic modelling Basic concepts

Mark Vestergaard
Phd, Postdoc
Functional Imaging Unit, Glostrup Hospital

What is tracer kinetic modelling?

- Mathematical discription of a tracer behavior in the body
- From the mathematical description the physiological system can be examined

What is tracer kinetic modelling?

- Mathematical discription of a tracer behavior in the body
- From the mathematical description the physiological system can be examined
- A tracer is injected in a physiological system
- The dynamic changes of the tracer concentration in the tissue is measured
 - Tracer concentration as a function of time
- Create a mathematical model which relate tracer input to measured tracer concentration in tissue

6

Tracers

- Tracer should provide information of certain physiology
 - Labelled substances, (nearly) behaving physically and chemically like the mother substance
 - ¹⁵O-H₂0, ¹⁸F-FDG
 - Indicators not related to a mother substance
 - MRI gadolinium based agents, 99mTc-HMPAO
 - Tracer binding to certain receptors
 - Somatostatin receptors, Serotonin receptors, Vascular endothelial growth factor receptors
- Tracers can be intravascular, extracellular, free difussible, bound to a receptor or behave in a more specific way.
- New tracers er being developed

Should not disturb the system we are studying!

$$C_{tissue}(t) = C_a(t) \otimes RF(t) = \int_{-\infty}^{\infty} C_a(t- au) \cdot RF(t) d au$$

Summary

- Input function, $C_a(t)$ We measure $C_a(t)$ and $C_{tissue}(t)$
- Tissue function, $C_{tissue}(t)$
- The input function is related to tissue function by modelling
- The input function and tissue functions is related by the impulse reponse function of the system

$$C_{\text{tissue}}(t) = C_{\text{a}}(t) \otimes \text{RF(t)}$$

- We model the impulse response function of the system
 - Compartment model
 - The parameters used to fit the model can be related to physiology

30